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I. SUMMARY

The aiiéymmetric analogue (small cross flow approximation)
is employed to develop methods for calculating laminar and turbulent
heat-transfer over bodies of revolution at angles of attack. These
methods are restricted to hypersonic flows over bodies with highly
cooled walls. '

A method is presented for determining the surface inviscid
streamline geometry and coordinate scale factors, which are required
in the axisymmetric analogue. This method reénires the surface
pressure distribution to be known, whether theoretical or ex-~
perimental. A theoretical pressure distribution is developed using
coﬁbinations of Modified Newtonian pressures, Prandtl-Meyer relations,
and the second-order shock expansion method.

Results are presented for spheres, jaraboloids, and spherically
blunted cones at angles of attack. Sui’ace pressures and streamline
geometries were found to compare favorahly with experimental data
and the three~dimensional method of characteristics. Laminar
heat-transfer results were also found ©» compare favorably with
experimental data. The turbulent fheating rates yielded results
close to those of Vaglio-Laurin's method.

It was found that the surface pressure distribution affected
laminar heating rates mcre than the inviscid streamline geometry.
The choice of reference conditions aud the exponent in the viscosity-

temperature relationship highly affected the turbulent heatiry rates.
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V. INTROBUCTION

Theoretical methods for predicting aerodynamic heat transfer to
axisymmetric bodies at an angle of attack and asymmetric Iifting bodies
are currently reqpired for the proper design of high velocity heat pro;
tection systems. A review of the literature (see, for instance; refs.
1 through S)Kr;veals that previous analyses were generally restricted
to limited conditions such as axisymmetric bodies at small or ze.o
angle of attack, or yawed cones and infinite cylinders. A simple
method for computing laminar heating rates over bodies at moderate
angles of attack has recently been developed by DeJarnette (ref. 6).
In this method the direction of a surface inviscid streamline is as-
sumed to be the direction of the free-stream velocity minus its normal
compouent at every point on the body. However, ref. 6 uses the mod-
ified Newtonian pressure distribution wﬁich is not highly accurate for
positions away from the stagnation region,

In order to determine convective heating rates over asymmetric
bodies and axisymmetric bodies at an angle of attack, one must solve
both the inviscid and the viscous flow fields. The complexit& of the
partfé; differontial equations governing these three dimensional flow-
fields makes the use of simplifying approximations desirable so that
tractable solutions may be obtained. A éubstantiﬁl simplification to
the viscous flow-field equations may be achieved through the "axisym~
metr;c analogue", or small cross flow assumption, as used in refs. 6,

7 and 8. The cross flow is the componeﬁt of boundary layer flow normal

to the direction of the inviscid streamline and along the body surface.

-1-



The axisymmetric analogue permits thé heat transfer to be calculated
over bodies at an angle of attack by any method -applicable to a body
of revolution at zero angle of attack provided the inviscid solution
(pressure distribution and geometry of the surface inviscid stream-
lines) is known on the surface. The surface inviscid streamlines may
be obtained from a known pressure distribution, whether theoretical
or experimental, as will be demonstratéd later,

In hypersonic flows, bodies are generally blunted to some extent
and the wall temperature is small compared with the temperature at
the edge of fhe boundary layer. If the total enthalpy at the edge
of boundar& layer is much higher than that at the wall, it is termed
‘a highly cooled wall. The flow is also characterized by relatively
low local Mach numbers at the edge of boundary layer and by a density
at the wall much greater than that at the edge of boundary layer,

As a consequence, the small cross flow assﬁmption is valid for laminar
as well as turbulent boundary layers (refs. 9 and 10). Most recently,
the cross flow momentum equation was solved by Bradley (ref. 5) for a
compressible turbulent boundary layer over a yawed, infinite cylinder.
Based on‘a method by Sasman and Cresci (ref. 4), Bradley's cross flow
solutions provide an indication of the applicability of the small cross
flow postulate. -

The compressible laminar boundary layer for two~dimersional and
axisymmetric bodies at zero angle of attack has been investigated ex~
tensively in the past. Theoreticai nethods for predicting the heat
transfer and boundary layer characteristics are well developed. 1In

general, solutions are obtained by similar solutions with the aid of



Levy-Lees type transfoirmation and by the integral form of the éémentum
and energy equations along with Reynolds' analogy. Results may also
be achieved from the numerical schemes such as the one developed by
Davis and Flugge-Lotz (ref. 11). Tor flows in the hypersonic range
with a highly cooled surface, the theory of Lees (ref. 1) has proved
successful arnl mosé convenient for estimating the laminar heat trans-
fer over an arirymmetric body at zero amgle of attack. The heating
rates predicied ny this method for thermodynamic equilibrium agree
well with experimental data (refs. 6, 12 and 13). An even simpler
method for estimating the heating rates may be obtained by extending
classical incouwpressible methods to the compressible case by intro-
ducirg reference fluid properties (refs. 3 and 14). Although this
simple theory is remote from more rigorous considerations, it yields
good agreement with erperimental data.

The laminar boundary-layer may change to the turbulent one in
the downstream region of some flow fields. The point at which this
change takes place is called the tramsition point. It is mainly
determined by the experimental observations; therefore, n§ attempt
is made here to treat this difficult problem theoretically.

The existence of apparent turbulent shear and heat flux, and the
effects of M;ch number and wall tempefature make the compressible tur-
bulent boundary layer difficult for analytical treatment. Even semi-
empirical theories sufier from incompleteness due to the contradiction
oé experimental results from one case to another (ref. 15). In general,
theoretical approaches frequently used for turbulent boundry layers

involve one or more of the following: (a) introducing a reference condition
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for fluid properties (refs. 16 and 17), (b) use.of Prandtl's mixing
length theory or von Karman's similarity hypothesis (ref., 18), and
(c) using transformation of coordinates (ref. 15). The idea of using
reference quantities was first introduced by von Karman (ref. 16)
with the assumption that the skin frictiom laws of incompressible
flow remain valid in the cave of compressible flow if the £luid pro-
perties are evaluated at some reference condition. von Karman used
the wall temperature as reference temperature for an adiabatic wall,

For bodies with heat transfer, one has to take account of large and

small values of temperature in evaluating the reference condition,

as suggested by Eckert (ref. 17). Therefore, turxbulent heating rates
may be estimated by using an incompressible skin friction law along
with Reynolds' analogy.
Prandtl's mixing length theory was used by van Driest (ref. 18)
for the compressible turbulent boundary layer over a flat plate with
and without heat transfer. The approach of transforming the compres-
sible turbulent boundary layer equations into the incompressible form
was first performed by Mager (ref. 15). This transformatioa is essen-
tially the same as the laﬁinar one, given by Stewartson, except the
stream function is modified and the apparent turbulent shear is
postilated to remain invariant.
In the case of axisymmetric flow, the integral form of the
momentum and energy equations has been used by Reshotko and Tucker ‘Z\\\/;//ﬁ
(ref. 19) and Cohen (ref. 20) along with the Illingworth-Stewartson | .
transformation. The use of the momentum integral and moment of momen-

tum integral equations with a Mager type transformation was developed
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by Sasman and Cresci (ref. 4).

For hypersonic flows with a highly cooled wall, the effect of
Mach number at the edge of boundary layer is small (ref. 2). This
provides a partial reasoning for one to correlate the incompressible
result with the compressible case. In ref. 2 Rose, Probstein, and
Adams showed that the hypersonic turbulent heating rates could be
reasonably predicted by the incompressible skin f£iction coefficient
and Reynolds{ analogy modified for the Prandtl number dependence
(with the Lewis number equal to unity).

Vaglio-Laurin (ref. 9) derived a more sophisticated method for

estimating turbulent heat transfer by the extension of Mager's trans-

formation to the hypersonic case (in the presence of pressure gradient
and heat transfer at the wall). The boundary layer equations were
written in an orthogonal curvilinear coordinate system Qith the
streamlines of tﬁe inviscid flow as one family of coordinate lines,
and the cross flow and Reynolds stresses'were neglected. Satisfactory
agreement with experimental data-at zero angle of attack'was obtained.
The most obvious difficulty in applying the axisymmetric analogue
is the determination of the inviscid solution on the body surface, In
the literature, few analyses have been developed to determiﬁe the invis-
cid streamline geometry from experimental or theoretical pressure dis-
tributions (refs. 10, 21 and 22). However, a valid and applicable
three~dimensional inviscid solution is still in demand. The need of
such a method is evidenced by the recent works of Bradley (réf. 5)

and Fannelop (ref. 23)., A very simple method for determining the



wnviscid sﬁrface streamline geometry, independent of pressure distri-
bution, was developed in ref. 6 as mentioned previously.

In the present report, the axisymmetric analogue is applied
to both laminar and turbulent boundafy layers for bodies at an angle
of attack aud with highly cooled walls. The methols of Lees (ref. 1)
and Vaglio~Laurin (ref. 9) are utilized for the laminar and turbulent
heating rates, respectively, at zero angle of attack. In addition, a
relatively simple expression for estimating the turbulent heating
rates is derived for comparison. Radiative heat transfer and surface
ablation are not considered. A general method for determining the
inviscid streamline geometry and coordinate scale factor from known
surface pressure distributions, whether theoretical or experimental,
is developed.

The surface pressure distribution may be calculated approximately
by the modified Newtonian theory near the stagnation region and then
by the Prandtl-Meyer relation from the "matching point" to the
shoulder of the body. For the region beyond the shoulder where the
inclination of body surface is constant, the second order shock ex-
pansion nmethod is employed. Sipce.the Prandtl-Meyer relation and
second order shock expansion method are applicable only along the
stresmlines in the plane of symmetry, the peripheral pressure distri-
butions are obtained through interpolation formulas given by refs. 13
and 24. Howeber, experimental pressures can be used when available.

The present method is applied to a sphere, spherically blunted
cones, and a paraboloid in hypersonic flows at angles of attack.

However, the basic method is applicable to any three dimensional or



axisymmetric body at an angle of attack., The procedure for the numer-
ical computation of heating rates on spherically blunted cones

is illustrated and the associated computer program is attached. The
calculated surface inviscid streamline patterns are compared with
those obtained from the method of characteristics (ref. 25), the
simplified method of refs, 6 and 26, and the geometric solution.
Heating rates are compared with theoretically predicted results

using the simplified method (ref. 26) and measured data of Zakkay

(ref. 13) and Cleary (ref. 27).



VL. ANALYSIS

6.1 Axisymmetiic Analogue

In order to investigate the heating rates over a general three
dimensional body or a body of revolution at an angle of attack, it is
convenient to write the boundary layer equations in a streamline-
oriented, orthogonal, curvilinear, coordinate system. As shown in ¥Fig.
1, the coordinate direction £ coincides wicth the local external invis-
cld streamline projected in the plane tangent to the surface; B is also
in the tangent plane and.norm;l to £; and z is measured from the sur-

face along a straight line normal to the tangent plane. The metric is

sz 2

= (hlcus)2 + (h2d8)2 + dz

where hldg = d8 and dS is the length element along a stréamline in the
boundary 1ayer;h1(£,8) and hz(E,B) are the.scale faq;ors for the £ and
B directions, respectively.

. In this coordinate system, the equations governing the steady
laminar boﬁndary layer flow of a homogeneous gas, in the absence of body

forces and heat sources, may be written as (Ref. 28)

Continuity:
a —
i (h ) + 35 (hlpVZ) + o (h 2pV3) =0 . (&)}
E-momentums
2
Xl-ﬁ+'\_'.2.ﬂ+v avl+v1v2 ahl V2 ah2
1 9t hz o8 3 3z h1h2 a8 hlh2 [:12
Lolie 12 (22)
phl E  p oz LY



B~-momentum:
; 2
Yif.\.’?_.,_ l i}‘\‘l.%.'.‘v .sz + V1V2 ahz : v1 8111
1 13 DB 3 9z l 9 13 hlh2 B
=i °P+i—‘?—c"i‘y—2-> (2b)
oh, 38 H oz
- z-momentum:
“‘.a—g - 0 i (zc)
2z
Enexgy:
v v
13, T28m 3 3 , 1-Pr 3h
hy 98 T h, 98 V3% 3 MG+ 5 5] S
The boundary ccnditions are
z =0, V, =V, =%, =19 H=H =h
: 1 2 3 *
v (4)
z > A V1 >u, ¥V.>0 H->H
e’ ! e

where A is the boundary layér thickness.

It is shown in Refs. 5, 9, an~ 10 that the small crossflow
approximafion is valid for an arbity-rcy streamline when the quanticy
[(Vllue)2 - pe/p] is small. This quan. ity is small for highly cooled
walls, which generally exists for hyp«:sowic conditions. Setting
(Vllue)2 - pe/p = 0, the B-direction mumentum equation is homogeneous
in V2 and has homogeneous boundary ¢ ~ditions; thus, the small
crossflow assumption reduces this equation to simply

V, = 0 (inside the boundary layer) (5)

2
Then Eqs. (1) to (3) can be written as



Continuity: )
.l‘.._a... .—a—. =
by 5. (hypVy) + o7 (hopVy) = 0 (6)
{~momentums
iilavl.‘.v uvl:.. 1 24..]_‘._8...( .8..‘.@‘.) (7a)
R, 3 T '3 Tz phy 9 " o 3 "_az
B-momentums
v, =0 (7b)
Z-momentum?
-g-}} =0 (7¢)
Energy:
v
1AM, o M 13 . oW 1-Pr dh,
hl Y3 + v3 3z  p 9z fu (az Y B 57 (8
The boundary conditions are as follows:
z=0, v, = Vg =0, H=H =h_
(9)
z > A, vl U, ) H= He

Equations (6) to (9) are identical to those governing the laminar
houndary layer over an axisymmetric body at zero angle of attack if one

replaces h, with the vadial coordinate r and S is distance along a

2

stfeamline, vhere again dS = h_ d€ .

1
The analogue in “ne governing <guations permits the heating rates

to b2 calculated by any method applicable to a body of revolution at

zero angle of attack pvovided the streamline geometry and the scale

factor, hz, are known from the inuviscid solution on the surface of the

body in question.
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For the turbulent boundary layer at hypersonic speeds, the
equations governing the mean motion of turbuleqt flow in three dimen-
sions are also analogous to those for axisymmetric flows, as indicated
by Vaglio-Laurin (Ref. 9). Thus, the axisymmetric analogge hulds for
the turbulent #s well as the laminar boundary layer for hypersonic

flows over bodies with a cool wall,

6.2 Calerlation of Laminar and Turbulent Heating Rates

6.2.) Laminar Heating Rate Expression

For the calculation of laminar heating rates, :h: method of Lees
(Ref. 1), developed for the flow over tluntaed itndies »f revolution at
zero angle of attack and at hypersonic speeds mzy b» used in the

axisymmetric analogue. Lees gives

u
A
3 = u (10)
W ks r2as1Y 226
o o PO o

Lees also shows that the modified Newtonian pressure distribution com-
bined with ti.e assumption of isentropic flow along the body surface

yields ‘
du o [
g= (-9 V2. s —2 o -t ay
Voo "ad "o ¥ ey

0 ©o

Note that "G" is used only iu the expression for the heating rate at
the s*:yaca0a suint where tie modified Newtonian pressure distribution

is valié



According to the axisymmetric analogue, Egs. (10) and (11) are
also applicable to any inviscid surface streamline on a three-dimen-
sional body at an angle of attack if § is the distance measured along
the sfreamline and r is replaced by the scale factor, hz,_correspond-
ing to the coordinate 8 measured along the body surface and perpendi-

cular to the streamline. (B is constant along a given streamline.)

6.2.2 Turbulent Reatinpg Rate Expressions

For turbulent heating rates, two expressions are used along with
the axisymmetric analogue, After investigating several methods for
computing the turbulent heating rates on axisymmetric bodies at zero
angle of attack, it was found that the method of Vaglio-Laurin (Ref. 9)
gives more éccurate results than the others._ As mentioned previously,
it was developed for hypersonic €lows with highly cooled walls and
pressure gradients. However, a new and relatively simple expression
is derived here for comparison purposes; From now on, the former is
designated as Expression I, and the latter as Expression II.

(2) Expression I
Vaglio-Laurin (Ref. 9) gives

8 = -2/3 - ES. %
g, =0.5Pr (, - H) ("r) PoUsCr (12)
where Cf* is determined by
1/2
B .u p_ U -
In €% + In [2.62 S L[S e e ey g o 0.4 [T e+ M2 (13)
£ v h,%0o,.1/2p u 2 £
¥ 2 He re

Equations (12) and (13) are already written in the streamline coor-

dinate system. The quantities with subscript "r" refer to a reference
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condition which may be evaluvated at the stagnation state of the exter-

nal flow or by the expression

Tr Te Tw 3 -1 T
°,1.';"= 0.5 71-.0- + 0.5 -'_i‘: + 0,22 /Pr TMe - (L4a)

or its equivalent

=
:‘
=

- 0.5-24 0.5 Y 35 Xzl 2 e
- " 0.5 i + 0.5 i +0.22 “fPr L= i (14b)

:ﬁlﬂ:‘

as suggested by Eckert (ref. 17). However, according to ref. 9, a
choice of the reference conditions based on Eq.(1l4)leads to heating
rates higher than the measured values.
In practical applications it is convenient to calculate the ratio
" of the local heating rate to the heating rate at the stagnation point.
Using the result of Lees (ref. 1) for the stagnation point heat{ng rate
(laminar) and the condition of a highly cooled wall, (He >> Hw) Eq. (12)
is recast as -
éw Rollzpeueuecf*
c1“’0 : li‘"r/;;;;i;c

The implicit expression for Cf

process, and this process generally converges very slowly. Therefore,

(15)

% in Eq. (13) requires an iteration

a simpler means for evaluating Cf% becomes desiryable. Let

ds} (16)

then Eq. (13) becomes



InC* + 2 = 0.4[7 cf*“l/ 2 (17)
and Cf* is calculated by iteration from Eq. (17) for a given Z. The
range.of variation of Z is 2 < Z < 14 for a possible turbulent flow;
and it is found that the following fifth order polynomial.in inverse

povers of Z yields Cf* approximately,

a

{8

a
+ ——g (18)
z

[

f o t

N

a a a
C.*=a + —l-+ -2 + —§-+
7 ZZ Z3

where a, o ag are determined from iterated results of Eq. (17). Their
values are given in Eq.(C-14) of Appendix C for 2 < Z < 14, and the
graph of Eq. (18) is shown in Fig. 33.

{b) Expression II.

This method is new and basically similar to that of Rose, Probstein,
and Adams (Ref. 2) except a different transformation is used and the
pressure gradgent effect is considered. For incompressible flow over a
flat plate one may use the 1/7 power law velocity distribution to
obtain the modified Blasius formula for the local skin friction coeffi-
cient of a turbulent boundary layer. This expression is given by

Schlichting (Eq. 21.12 of Ref. 29) as

1 . -0.2
(icf)incomp a 0.029§(Re£) (19

where Rez = peuezlue and ¢ is the distance along a flat plate.

To apply the above formula to compressible turbulent boundary

layers, Mager (Ref. 15) found the transformation between skin friction

coefficients and Reynolds numbers as



m
e
(Cf)comp (uo) <Cf)iu00mp (20)
L]
= (2
(Rez)comp h ("e) (Rez)incomp (21)
With these relations, Eq. (19) may be written as
- ) u 3
3c = 0.0296(Re, )"0:2 (800 (22)
2°f L uo

for a flat plate. Equation (22) is valid up to Rez = 107.as indicated

in ref. 15. Substituting this result into the modified Reynolds' anal-

ogy for turbulent flow
C

= (232)

or

N“z = =C Pr Rez {23b)

(as given in ref. 29), one obtains

¥e.0.6
(;"9 (24)

-0

3 0.8
Nuz = 0,0296 “/pPr Re2

vherc Nuz is the local Nusselt number, defined by

észx

Nu

In turn, Eq. (24) can be written as

0.2 0.8

. - n, Tl u) u
4, = 0.0296 Pr 2/3 (H - ) Tt (;990'6 (25)
g o

for a flat plate.
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In order to take account of the pressure gradient and the varia-
tion of fluid propu.rties at the edge of boundaf& layer (in axisymmetric
ficw). the characteristic length £ in Eq. (25) should be stretched by a
further transformation {vef. 9). TFollowing the well known and verified
approximation that the same flow mechanism holds locally on axisymmetric
bodies as on two-dimensional bodies (see, for example, refs. 2 and 9),
the expression for % is obtained by transforming the solution of fhe
integral momentum equation for a flat plate to that for axisymmetric

flow. The general integral momentum equation is (ref. 30)

T £ 4o gdu, 44 g gp
—— W = e e ol e e S T e o —
773 - + 0 ) + 5 3 t T (26)
pu e e
ee
where Hf is the form factor,
A%
)

and A% and © are the boundary-layer displacement thickness and momentum
thickness, respectively.

In the case of a flat plate, Eq. (26) reduces to the form,

T
J-i=%% T @27
Pele i

The solution to Eq. (27) is obtained by using the semi-empirical relation

given by Schlichting (ref. 29)

T
v . K (28)

Pele 259_1/4
Vy

where K is a constant. Substitution of Eq. (28) into Eq. (27) and inte-

gration yield



1/4,.4/5

2] (29)

o= 1B O
4 tu
e .
By the foregoing approximation that the same flow mechanism holds
locally on axisymmetric bodies as on two-dimensional bodies, expres-
sion (28) is also valid for the left hand side of Eq. (26); and accord-

ing to Lees (Ref. 1) and Vaglio-Laurin (Ref. 9), H_ = -1 for hypersonic

£
flows with highly cooled walls. Hence, Eq. (26) becomes

du dp_
T TRt e e ety )
e \1/4 e 9% Pe
)
v
by
or
1/4 . _ 5/4 1/4 5/4
(Gpeuer) d(Opeuer) = er ugvr r’ dx
wh'ch integrates to
a1 (5 .x 5/4 1/4 5/4, .4/5
] = peuer[ZK fo Pe uevr. ! dx] (30)

Equating Eqs. (29) and (30) one obtains

1 x 5/4 1/4_5/4
P u v r .
e er

Using this result in Eq. (25) and replacing r by h2 and x by S,
the local turbulent heating rate at the wall on a body at an angle of

attack becomes i

0.0296Pr_2/3(ﬂ “h )p 1.05u 0.8u v 0.05h21/4

4, = R T T TG (32)
"o [fope uevr h2 ds]

As done for Expression I, Eq. (32) is recast into the form of the

ratio of the local heating rate to the heating rate at the stagnation



point,
i, 0.0417p 1'osueo'8uevr0'05h21/4R01/2 5
= 3
] 0. 5 1 1.8 5/4 1/4 5/4,.,1/5
G, Gl V) Ugpe Mgy By ds)

Again, the reference quantities can be evaluated with the aid of Eq.
(14). |

In applying the axisymmetric analogue, the difficulty lies in the
determination of the surface inviscid streamline geometry, scale factor
(h2), and the surface pressure distribution; also, for the turbulent

boundary layer, the transition point is not known.

6.2,3 The Transition Point

The difficulty of determining the transition point (transition from
laminar to tufbulent bouﬁdary layer) is well known. Analyses concern-
ing the criteria of the transition point are mainly based on experimen-
tal observations (refs. 12, 14, 31, and 32). For a body at an angle of
attack, the transition criteria for axisymmetric flow should be equally
applicable to the same body at an angle of attack, if the meridian line
in the former is replaced by the streamline in the latter. Using shock
éube observations, Stetson (ref. 31) showed that transition first
occurred in the sonic region and that the transition Reynolds number
(based on local fluid properties at the edge of boundary layer and the
momentum thickness) varied from roughly 200 to 600, depending on the

-freestream conditions and the body shape history. This result was veri-
fied by Cresci, Mackenzie and Libby (ref. 12) qualitatively and was also

accepted by Zakkay and Callahan (ref. 14) and Bloxsom (ref. 32). 1In
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connection with the calculation of momentum thickness Reynolds

.

number, Ref., 12 gives, (according to the theory of Lees),

0.66[‘§peueuer2d811/2

Ux

Rey = (34)

The above equation has been recast and written in the present notation,

where

To evaluate the transition behavior of the boundary layer over
bodies at an angle of attack, the integration of Eq. (34) should be
carried out along a streamline with r replaced by the scale factor, h2,
based on the previous arguments. However, the transition Reynolds num-
ber given by Eq. (34) yields only a possible range in which the transi-~
tion might occur. The true transition point (within the range Ree
from 200 to 600, roughly) depends on the freestream conditions, body
shape, wall to stagnation enthalpy ratio and surface roughness. Apart
from makiné rough assumptions, no definite criteria can be made in this
vegard. Therefore, both laminar and turﬁulent heating rates are calcu-
lated simultaneously; and to indicate the region.of possible transition
points, Eq. (34) is used along with the criteria observed in Refs. 12
and 31, i.e., Re_varies from 200 to 356 for a blunt cap, 200 to 500

o
for a conical afterbody, and 200 to 600 for a cylinder.

6.3 Calculation of Streamlines and Scale Factors

Previous analyses on the calculation of surface streamline geometry

and scale factor require cumbersome computations (Refs, 10 and 22),.



Thus, a simpler, but rigorous, method be:iomes desirable.
For the flow over a body of revolution at an angle of attack,
the inviscid momentum equations along the surface (from ref. 28) are:

x¥*-momentum:

204
u wou_ wif + 1 ap (352)

=S e+ T - X% -
X X
freee? ef1se0?  of1e?

¢~momentum:
v dw  wdw, wef' 1 9p .
26x*"’~£8¢" §+pf3¢-o (35b)
1+£Y £l14£!

where x* is the distance along the body axis of symmetry (dx* =

(1+f'2)-1/2

dx) and ¢ is the azimuthal angle measured from the windward
line (see Fig. 1). The velocity components u and w are neasured along
the surface in the x and ¢ directions, respectively, as shown in Fig. 1.
The body radius is £ = £(x%), méasured from the axis of symmetry.

The geometry of any streamline emanating from the stagnation point-
may be expressed as ¢ = ¢(x*, B), where again B is constant along a
given streamline. The coordinates are related to the velocity comporents
through the relation
féﬁ?s =3

or

£ 2y -
Jr—-'i Ix*’'B
J4£!

Pefine %;; as the substantial derivative, or derivative (with respect

to x*)'along a streamline. Thus,

=¥
u

9 ::..12.'_.
(aii’s = Px*
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]
wnd the streamline equaticn becomes

Db _ Jire'Z
f u

Dx¥ (36)
Differentiate Eq. (36) with respect to x* to get
Y oy 7S A1} '['—
D2¢ 1+f'2[qu* - Dx* v D e_}+f'2) (a7)
7= % 7 T ubet ~
Dx#* u
Since u = u(x®, ¢), then
Du = o pyx 4 28 py
Ix* 3¢
and using Eq. (36), the above can be written as
) 2
Du_ du  w 1'% v
Dx%  3x* " u £ 9
Use this result in Eq. (35a) to get
Du_ Lulet 10w, - (38a)
Dx*¥  u f p 8¢)x* .a
In a similar manner, Eq. (35b) becomes
Dx* f ufp ‘3¢’ x*
Since ' -9 _
u2+w2=y—M;g- (38c)
then
2 Ti’p
oo MNP . (384)
p (Hw” fu”)

Substituting Eqs. (36) and (38) into Eq. (37) and simplifying, thére

results
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2,
D =E 1 4 ——— ._.4' D(‘)_E 1 _QR
Rl I I L -1 =7 Gx
£
* F px ;-2 Gy * P Eper @ (39

where F = J1+£'°,
Now, introduce a new variable 0, the angle between the tangent of

local streamline and body meridian line, i.e.,

=¥ _ £ Do
tane T- F Dx%

or

-5"% = % tand (40)

Differentiating this equation with respect to x* yields

2,

Do . L. Db %().l_____l___F___l_)_g_
Dx*2 F Dx*® Dx cosze £ Dx%

Combining this result with Eq. (39) yields, with the aid of Eq., (40),

o tane _1 3P f'tanb '
( ) ( L T (41)
x® = %
Dx # ¢ f yMzP ' x £

Equations (40) and (41) are valid along a streamline (vhere B is
constaﬁt), so they can be.integrated simmltaneously to determine che
geomeiry of a chosen streamline, 8 = 8%y rnd ¢ = $(x%), Howe§er the
derivatives i%?_ and Dx* in BEqs. (40) and (41) become infinite at the
most forward point of the streamline whwie 0 = 90°, Of course, this

occurs only for streamlines that move farward from the stagnation point

(as shown in the sketch on the next p:ge). In connection with these

T



infinite derivatives, it is

helpful to rewrite Eqs. (40)
and (41) by using S, the distance
measured along a streamline,

as an iadependent variable

- X%
most forward
point
v )
ﬁ/‘( inetead of x*.
From the sketch shown below
£d¢ i -
¥

P

I/ . Fdx*

4¢ = cosd Fdx¥® + sinf id¢

i1t is seen that

Now apply this result along a streamline to get

'I_)—I:c% = cosOF + sinéf 'l%c%"

and using Eq. (40) for D¢/Dx*, there results

D3 . E_ . Dxk _ cos6
-Px*  cosb® T DS F

Then Eqs. (40) and (+1) may be written as

Dy . sind
DS~ f

and

De ¥ 1 ,Sine, 3P ) - cose (22) -
£f 3¢ x*]

-.-—g:—. i \ "
DS " 52 F R0

(42)
(43)
-g-'-%%r-@- (44)




Equations (42), (43), and (44) constitute a set of simultancous,
first order, ordinary differential equa’ions for determining the geo-
metry of a chosen streamline from known pressure distribution. The
integration with different initial conditions gives different stream-
lines. The evaluation of iﬁitial conditions will be presented in
Appendix B.

The next task is to determine the equation for the scale factor,
hz, along a streamline. At a general point on the surface of the
body, the sketch shown below holds. For this analysis consider

¢ = ¢(£,8) and x = x(£,8);

From the sketch it follows that

fdé
X _ Ix 2dB
sg-- h1 cosB 8= hzsine
' ¢ h,dE
3 _ hlsine- 3 _ h2c039
13 £ L £ i - dx
Since x = x (£,8) and ¢ = ¢ (§,B)
then
2 2
N S b ;.
369E ~ DEXB ("Se)
2 2
L ¢ _ 3¢
3BIE ~ DEIB (45b)
For Eq. (45a)
9. (3% 3 20 3h2
3E (55) = SE-(- h2 sing) = - h2 cosd 3 " siné 3t
and
oh
L2 - 1 _ 38
36 (85) 36 (hl cos8) = cos6 58 h; sind 38



Equating the right sides of the above two equalions gives

1My 10 180 cot0 o, ' (46)
h2 nlaé; h2 9B hl 8_§ 1 2 38
For Eq. (45b),
3 28 _ 3 (hzcose) _ cos0 3h2 ) hzsine 2 _ hzcose of
. £ f 9E £ 12 f2 ok
and
2
L 4
(—4,_) (’hlsine) _ sing ahl . hlcose 28 . £ h1h231n 0
aB £ £ 88 £ B 2
£fF
1
; Equating the right sides of the above two equations gives
_a_h_l_ - cott 3?_2" h 20 kcote o " cotd 30 _ £! hlhzsin 0 47
o8 13 2 3¢ £f ot 1 '] fF

éubstituting Eq. (47) into (46) and simplifying, one obtains

'1_8_1_1_2_____( ) +f'cose
hlh2 13 0B E £F
: Since hldE. = dS, the above equai::lon may be written élong a streamline as
]
th } (.3_9_) N hzf cosb )
DS 8B § £F

The term ( ) in Eq. (48) is obtained by differentiating Eq. (44)
with respect to B and letting

2% 3%

3 = 9£08

The result is the following:
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1 cosf JP sin0 3P f'eosh, 236

L e -4 100 20, ]
DS ‘38 YM?P F ox f i) ¥ 1]
.2
+ h2sm 0 a_ & 9 DO. f'31n0
F ox¥ MW DS DS fL
h 2 . '
+ 2 ' {- sin @ 9 (1 oP )+ sinfcosO 9 (l oP ) + sinfcosO 3 (1 9P,
;M? F ax® ‘PF Ox% £F 9¢ ‘P ox® F ox% ‘Pf 8¢
cos26 9 1 ap f'sine sind 3 cosf 3
-"'?"376-('1;‘53‘5)+( T ) 5 3 (N) 5 (M)I}
(49)

Equations (48) and (49, are to be solved simultaneously along
with Egs. (42), (43), and (44) for the desired streamline geometry
¢ = ¢(S,B) and scale factor h2 = hz(S,B). These equaticns, in turn,

require the pressure distribution along the surface,

6.4 Estimation of Surface Pressure Distribution

6.4.1 Theoretical Methods

As indicated in the previous analysis, a known surface pressure
distribution is requiréd for calculating the inviscid streamline geo-
metry and scale factor as well as heating rates. It is well kmown that
the pressure distribution over blunted bodies is predicted fairly accu-
rately by the modified Newtonian pressure distribution near the nose
region and is written as

© 2 Pco Poo 2 Peo

s— = (L ~-=) cos“P+ == (1L - 7)) (cosasiid + sinacosdcosé)” + o

P P P P P
o o o o . o

s -

where ¢ and § are the local surface inclinations with respect to the

freestream velocity and hody axis of symmetry, respectiveiy. Since
£ 1

siné = and cosé =
, Vgt g
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it follows that
P

Py 2
P - 155 (£'cosa + sina cosé)

«©
'i;;= ) + 5 (50)
14+ £ °
P : )
where ' is given in ref. 33 for a perfect gas, with constant ratio of
o

specific heats Y after the normal shock, as

Y oo 2= 1
Po [_2 5[ GOy 51
0 P T 6D
o |(y+)M
The modified Newtonian theory loses its accuracy where the slope
of the surface with respect to the free stream velocity is small. It
can be improved by employing the Prandtl-Meyer expansion downstream of

" ji.e., where both pressures and pressure gradients

the “matching point,
calculated using both methods are equal, as suggested by Kurfman (ref.
24). The applicability of the Prandtl-Meyer relations to the three
dimensional case was justified by Eggers, Savin, and Syvertson (ref.

34), if (a) disturbances originating on the surface are largely absorbed

in the shock wave and (b) disturbances with the divergencé of stream-

lines in tangent planes to the surface are of secondary importance

compared to those associated with the curvature of streamlines in planes
normal to the surface. However, the frandtl—Meyer relations hold oﬁly
along a streamline, and the pressure distribution must be known before
the streamline can be calculated. The problem is resolved by utiliz-

ing the expression suggested by Kaattari (ref. 35):

cos2¢ [Pr,o + Pr,180] cosd [Pr,o _ Pr,180]

P__ +
Po 2 Po Po afo 2 Po Po afo
P P
ren oy 6
0 0=0 o ofo



" ¥ at zero angle of attack and P

-28-

where Pr,o and Pr,lSO are pressures at a given ¥ on the windward
and leeward sides, respectively. Pr is the pressure as a function of
0,160° the pressure at the most

forwvard point of the body. Note that all these pressures are functions

of x* except P is a constant for a given a.

0, 180
Equation (52) permits one to determine pressure distributions

over blunt bodies at angles of attack when the pressure in the verti-
cal plane of symmetry is known at the angle of attack in question and
also at zero angle of attack. The method holds up to o = 40° as con-
servatively suggested by ref. 35. Since the vertical plane of symmetry
of the body at an angle of attack contains the most windwgra and lee-
ward streamlines, and the meridian lines of an axisymmetric body are
actually streamlines at zero.angle of attack, then the pressure esti-

mation techniques of matching the modified Newtonian law and the Prandtl-

Meyer relation is applicabie to determine the required pressures on the

_vight side of Eq. (52). It should be noted that Eq. (52) is an inter-

polation formula for the circumferential pressure distribution. Another

" interpolation formula is given in Section 6.4.2 for conical afterbodies.

Based on the above argument, Eq. (52) is employed for pressure dis-
tributions downstream of the matching point for the streamlines in the
plane of symmetry. The differential equation governing the Prandtl-

Meyer relation is

2
. (._..) . (53a)
d" .(2-1 P, .



where v is the Pranitl-Meyer angle. To facilitate the integration
along a streamline, the above equation is recast by using S, the arc

length along a streamline, as the independent variable. This is done

* as follows,

D (B - Dx* d_ 2) = Dx* dv_d_ &)
DS P ps dx* 'P_ DS dx¥* dv P

Since v = constant - Arctan(f')

and from Eq. (42)

Dx®* cosd’

DS F
For the streamlines in the plane of symmetry, cosé = 1. Therefore, Eq.

(53a) becomes

— 2

Dp ,P, £ - yM" P

DS (Po) - F3 7 P, (53b)
Juta

Note, however, that this expression yields constant pressure on surfaces
of constant slope (f" = 6). )

For the region beyond the shoulder of a blunted cone, where the
slope of the surface is constant, it was found that the second order
shock expansion theory developed by Syvertson and Dennis.(ref. 36) is
appropriate. The secoﬁd order shock expansion theory gives the pressure
distribution along the cone surface (in the plane of symmetry) as

P P

P ’
2 __c_ e _dm
=5 - G -pe (54a)
[+ 4] (o] o)



where Pc is the pressure on the cone surface. For a cone at an angle
of attack, the value of Pc on the windward and leeward lines may be
obtained from the cone solution at zero angle of attack (such as ref.
37 or 38) if the cone half-angle is replaced by the surface inclina-
tion angle measured with respect to the frge stream velocity. The

term Pj is the messure immediately after the juncture of a blunted

cone, and
x*-—xj
= &%, T (54b)
h)
Q. cosé
)
&, —i—~—- (- s1ng,-sing,) + ~1 L 2y, (54c)
j j i
e
= Lo (54d)
2(M"-1)
.
¥-1,,2[2G-D)
Q= %L%E_ (548)

2
Here the subscript "j" implies the quantities evaluated just aft of the
juncture, and "1" evaluated at one length segment before the juncture.

The local surface inclination with respect to the body axis of symmetry

is §.

!

Equations (54) estimate the surface pressure in the form of an
expénential decay if Pj > Pc' Recompression of the surface pressure
occurs when Pj < Pc' In any event, both cases satisfy the boundary con-
ditions exactly at the juncture and at the end of an infinitely long

cone. In case the cone surface inclination with respect to the free



stream velocity is larger than the "matching" slope for the Prandtl-
Meyer relation, then it is more appropriate to use the modified
Newtonian‘pressure law. Néte that Eqs. (54) are used only along the
windward and leeward streamlines. For bodies at an angle of attack,
the circumferential pressure distribution is obtéined.from an inter-
polation formula such as Eq. (52) or Eq. (56) in the next section.

In summary, the surface pressure distribution over the body in

question is first predicted by the modified Newtonian pressure distri-

bution near the stagnation region; then by the Prandtl-Meyer relation

beyond the "matching point," and finally by the second-order shock
expansion method over the cone surface. The latter two must be
applied aiong the windward and leeward lines; and thus, an interpo-
lation formula is needed for circumferential pressure distributions.
These methods are not only simple and fairly accurate for estimation
of pressures, but also yield derivatives of the.pressure for rapid

computation of the streamline geometry and scale factors.

The surface pressure distribution required by the present method

can also be obtained from the experimentally measured values or those

from more sophisticated methods. This is particularly desirable for
bodies with a blunt front surface and a rounded shoulder (Apollo-~type
reentry bodies). This type of body, while traveling at hypersonic ‘
speeds, will have the forward blunt surface in the subsonic region and
the fluid properties are strongly influenced by the sharply rounded
ghoulder. The surface pressures predicted by the modifiéd Newtonian

law deviate from the experimental values up to 15% (ref. 39). Other
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cases where the surface pressures are not predicted accurately by
the simple method desdribed in the previous section is the case of
.a very long blunted cone., For this typé of body, theré may be a
“pressure well" over the afterbody surface (ref. 25) which cannot be
predicted by the second order shock expansion method. For these
particular cases, the surface pressures shéuld be obtained from
eiperimental data or from more sophisticated methods, such as the
method of characteristics.

6.4.2 Interpolation Formulas

In order to facilitate the calcﬁlation of streamlineé, scale
factors, and heating rates, it is necessary to have an interpolation
fornula from which the pressure derivatives may be obtained. For
highl& blunted bodies, Eq. (52) is apérqpriate. For long blunted

cones, Zaakay (ref. 13) suggests the following interpolation formula,

P 0 o2 o3 Pr '
— = A acos¢ + Bo" + Eacos2¢p + () _ (55)
Po . Po 0=0

where Ao, Bo, and E° are functions of x* to be determined from
known data, whether experimental or theoretical. Let

| 4

A o o X "~ 10,3
A=Aa, B=Ba+ (Po) =0 and E=E ?
Eq. (55) is then simplified to
%— = Acosp+ B + E cos2¢ (56)
o

vhere A, B, and E are also functions of x* that can be

"determined as shown in Appendix C.
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If éxperimental pressures are available, Eqs. (52) and (56) may
also be used to determine the circumferential pressure variation. In
order to obtain longitudinal pressure derivatives, an interpolation
formula for the longitudinal pressures is needed. This may be accomp-
lished by using a polynomial fit with the aid of the method of least
squares.

For other types of blunt bodies, the simple theoreticél methods
given in the previous section should yield faifly accurate surface
pressures. In genéral, it is adequate to use Eq. (52) for the forward

blunted surface region and Eq. (56) for conical afterbodies.

6.5 Agplicatioﬁ and Method of Computation

The method developed in the previous sections is applied to a
sphere, a spherically blunted cone and a paraboléid traveling at
hypersonic speeas and at an angle of attack. The ‘sphere case is
considered mainly for the purpose of comparing the results of stream--
line geometry and the scale factors calculated by the present method
with those obtained from the exact geometric selution. The paraboloid
is chosen to represent the general nature of other body shapes that
may be treated by tﬁe present method.

For all of the above three caseg, the streamline geometry and the

ecale factor, hz, are determined by integrating the following set of



simultanebus, first order, non-linear ordinary differential equations

derived earlier:
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With a set of given initial conditions, the solutions of the above equa-

tions is carried out by the fourth-order Runge~Kutta method of numerical
dntegration (ref. 40) along a streamline. The evaluation of initial con-

ditions is presented in Appendices A and B. The stagnation point is

‘assuued to be the point where the surface inner normal vector coincides

vith the free stream velocity, i.e.,
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f'o = cot «
As discussed in ref. 41, it is exactly true for the case of a sphere
or a spherically blunted cone with the sonic line lying on the spheri-
. cal cap. Tor other cases it is only approximate.

For the regidn near the stagnation point, Eq. (50) is used for
the pressure distribution and its derivatives. Downétream of the
matching poin:, Eq. (53) along with Eq. (52) is employed. The use of
these “wo ,recsure estimation techniques is. distinguished by the locus

of the matching points at o # 0, as shown in the sketch below.

,

contant
x¥%-plane

-

-y - . - o
\\

\ locus of matching

x.points at o # 0

]
\
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|

It is also seen in the sketch that the input pressures, Po 180°
F Ll

Pr,180 and Pr,O for Eq. (52) are the pressures at points 0, 1, and 3,

‘respectively. The pressure Pr is the pressure at point 2 when a = 0.
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On a given streamline, the pressure beyond the matching point

. ) Y
requires P0,180, Pr3180’ and Pr,n as functions of x". TFor

the region where these pressures fall within the Prandtl-Meyer
domain, a relationship between the local M and the Prandtl-Meyer

angle v is desirabie. An iteration technique suggested by Collar

(ref. 42) is used here. Collar gives

2 6
Mn-{-]_ = 1 -5 (57)
v + arccos Mn] .

5

vhere Mﬁ and Hh+1 axe the assumed and improved Mach numbers for

Ccos

a given v,

For a give- x* statior, the Prandtl—Meyer-angle along the

lceward streamline is given by

v = vq + Gq - arctan f' + o (58a)

where vq and Sq are the Prandtl-Meyer and surfz:e incl. -tiomn
angles, respectively, at the matching point for o = o. Simarily,

the Prandtl-Meyer angle on the windward streamline is

v=v +§ -~ arctan f' ~ a - ' (58b)
. q q

Since Pr is the pressure at given x* station for a = 0,

the v corresponding to o = o is given by

- - t
V=0 = vq-%&q arctan f (58¢c)



The matching point is determined by the method of ref. 24, which
provides charts for obtaining Mach number and surface inclination angle
at the matching point for a given Pm/Po. In order to facilitate digi-
tal cowputation, the result for Mﬁ versus Pm/P° given in ref. 24 is

transformed to the following third order polynomial

~ P P \2
M, = 1.3520894 + 1.2554079 (F"i) + 12.451517 (-P-"f)
[+ [¢]
' (59
P)\3
- 162.76788 { ==}
[¢)

Equation (59) holds for 3 < M_ < 20. As shown in Fig. 3, M& is a weak
function of PwlPo.

To célculate laminar and turbulent heating rates, Egs. (10), (16),
end (33) are numerically integrated by Simpson's one-third rule along a
streamline. The pressure distribution used here is the same 2s that for
the streamline geometry and scale factors. As mentioned in Section
6.1.3, both the laminar and turbulent heating rates are calculated at
the same time. To indicate the region cf possible tramnsition points,
Reynolds numbers based on local external ﬁroperties and che momentum
thickness are also calculated along a streamline. The velocity ratio
appearing in Eq. {(10) is .cbtained from the pressure assuming an isen-
tropic expsnsion along a streamline from the stagnation point to the point
in qugsi-on. To take account of the real gas effects, an effective sﬁe-
cific heat ratio is used. Other fluid properties in Eqs. (14), (15),

(16), and (33), and (34) may also be evaluated app:roximately from the



isentropic relations (ref. 14). Following Vaglio-Laurin's suggestion
(ref. 9), the reference condition quantities in Eqs., (15) and (16) are
‘evaluated at the gtagnation state of the external flow. But those in
Eq. (33) are obtained using Eq. (14). In addition, a power law rela-
tionship between g and T, u/uo = (T/To)w, is used with 0.76 < w < 1.0."
The term r in Eq. (10) is replaced by h2, which is calculated from Eq.
(48)f In calculating the turbulent heating rate, the value of Z from
Eq. (16) is fed iyto Eq. (18) and the resulting Cf* into Eq. (15).

The ahove procedure is applicable to a general blunted body.

However, particular steps should be taken for certain body shapes.

These are illustrated as follows.

6.5.1 Application to a Sphere

Por the case of a sphere, the procedures for calculating the stream-

line geometry, scale factors,and laminar and turbulent heating rates are

the same as described above. The body shape is written as

£/R = Jaxx -z ' (60)

The initial conditions, evaluated at a point generally one step size
away from the stagnation point, are determined from geometric solutions

developed in Appendix A. These are

E; =.Arccos(cosacos§; - sinusid§;coss) (61a)
Sk = - = 3

x§ 1 cosx; (61b)
$; = Arcsin(siﬁ§;sin8/sid§i) ' (61c)

6i = Arcsin(sinusinB/siﬁEi) - {61d)



Eéi = sid§; (61e)

h2,.8inb,tand

80, _ 4 i i <inocosf
(88)1 tani'ci siniicosei (61£)

The barred quantities are normalized by the radius of the.sphere. The

subscript "i" implies the initial values; S, is the distance measured

i
from the stagnation to initial point along a streamline and B defines
a particular streamline as shown in Fig. 2.

The numerical procedure is programmed in Fortran IV language on
the IBM 7040 digital computer. The average execﬁtion time for each
increment in S (including integratiop of the heating rate equations and
simultaneous differential equations for streamline and scale factor) is
0.17 second. If a step size ofVO.Ol ;s used, an average of 150 incre-
ments is required for one streamline from the stagnation point to
x*/Rb=1; then the execution time is 26 seconds up to that point. A
typical body may require heating rates along 20 different streamlines,

which results in a total computing time of approximately 9 minutes on

the IBM 7040.

6.5.2 Application to a Spherically Blunted Cone

In hypersonic flows a typical body shape frequently considered in
the literature is the spherically blunted corc. However, few investiga~-
tions have been made for cases ét an angle of attack. In applying the
present method to this body, the numeri:al procedure for calculating the
streamline geometry, scale factor, and the laminar and turbulent heating

rvates is similar to that of the sphere. The only difference is that the

second order shock eﬁpansion method is used for estimating the pressure



P

S S O IR Y gl A £ o
’

-4~

' Y

in the plane of symmetry over the cone surface, To illustrate a typi-
cal application of the present methad, the complete and detailed compu-~

tational procedure and the corresponding Fortran source program are.

presented in Appendices C and D, respectively.

The average computer execution time is also the saﬁe as in the
case of a sphere, i.e., 0.17 second for each increment in S (including
integration of the heating rate equatioﬁs and simultaneous differential
equations for streamline and the scale factors). A step size of 0.01
is used for the spherical cap region and 0.1 for the conical afterbody.
An average of 230 increments is required for one streamline from the
stagnation point to x*/Ro = 10; thus, the execution time is 40 seconds
up to that ﬁoint. Also, a typical body may fequire heating rates along
20 different streamlines, which results in a total computing time of

approximately i4 minutes on the IBM 7040.

.6.503 Application to a Paraboloid

In order to compare the present method with that of refs. 6 and 26,
an £ = v1.3x* paraboloid is considered. The computational proceduré
for the case of a paraboloid is the same as that for a sphere, except
the initial conditioné are evaluated from Eqs. (B-3) in Appendix B,

In Eqs. (B-3), the initial quantities x*i, ¢y ei, hzi and (86/88)i

are given in terms of e, 4 and B for a given angle of attack., Care

must be exercised in selection of these values. Physically, e determines

" the location of the initial point and A specifies a particular stream-

line at its initial point. The teyrm B is an arbitrary constant. In
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the computation, a range of 20 to 200 is . used for A ; € is chosen as
small as 10"6 to 5 x 10"6 and B_ may be set to ﬁnity. These quantities
are shown in Fig. 4.

The remainder of the computational procedﬁre is identical to

that for the case of a sphere.



VII. RESULTS AND DISCUSSION

A series of programs have been computed on the IBM 7040 computer
at the Virginia P;lytechnic Institute to determine the inviscid
streamline geometry, scale féctors, and both laminar and turbulent
heating rates over the following bodies and flow conditions:

©

(1) Sphere at o = 15° aud 30°, M_ = 8.0.

(2) Sphericaily blunted cone with 9° half-angle at a = 10°, M_ = 18.

(3) Spherically blunted cone with 20°.ha1f—angle at a 15°y M_ = 6.0
(4) Spherically blunted cone with 15° half-angle at o = 10°%
and 20°, M, = 10.6. _
(5) Spherically blunted cone with 30° half-angle at a = 10°
and 20°, ¥ = 10.6.
(6) Paraboloid £ = ){j;;; at ¢ = 15°, M_ = 8.0.
The flow conditions hcve been chosen the same as those used in severa}
theoretical and/or'experimenfal investigations which are available
fér comparison purposes. All the cases above were computed with

Voo = Y = 1.4. The results are presented in graphical form in Figures

5 to 32.

7.1 Streamline Geometry and Scale Factors

For the case of a sphere; the calculated streamlines and scale

factors at M_= 8.0 and o = 15° are shown in Figures 5 and 6 and
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comp;red with those obtained from the known geometric solutions. In
the region where the modified Newtoﬁian pressure distribution theory
§s valid, the accuracy of the results for btoth streamline location
¢(x*,8) ang s?ale factor, hz, is within 0.5%. A compa?ison of the
results is alsn made for the region from the "matching point" to the
position ;c*/Ro = 0.74. 1In this region, the Prandtl-Meyer relation
is used along with Eq. (52), and the aceuracy of the calculated

%
é(x , B) and h, 1is within 1.5%.

2
Fig. 7 shows the calculated streamline direction, 0, over a
sphere at angles of attack of 15° and 30°. The maximgm deviation
from the geometric solution is 0.3%.
Since the accuracy of the calculated streamline geometry and
scale factors depends on the pressure djstribution, the validity
of the interpolation formula for pressure, Eq. (52), has been
partially tested. The test was to compare éhe resultant pressures
obtained by bdth‘Eqs. (50) and (52) near the stagnation region. In
tﬂis region, if the input pressures along the windward, meridian
(at a=0) and leeward lines for Eq. (52) were calculated by using

Eq. (50), then the resultant pressure should agree with that obtained

directly from Eq. (50). The results are shown in Fig. 8, and the

agreement is very good. .

In Fig. 12 the calculated streamline patterns for a spherically
blunted 9° half-angle cone at M_ = 18 and a = 10° are compared with

those obtained from the method of qharacteristics (ref. 25) and the

Simplified Method of ref. 6. The 8 angles'specify the individual




streamlines. Two different pressure distributions were used for the
present method. For Pressure-I, the hybrid préssure (Newtonian plus
Prandtl-Meyer) was used for the spherical cap and the pressures from
the method of characteristics were employzd over the cone surface.
Eq. (56) was psed'for interpolation., Pressure~II uses the same
pressure as Pressure-l over the spherical cap, but the second order
shock expansion in the plane of symmetry was used along with Eq. (52)
for the cone surface. In general, the calculated streamlines from
tne pr;sent method agree very well with those from the method of
characteristics. liowever, consi&e1able deviation occurs for stream-
lines near the windward side; this can be attributed to the fact that
Eq. (56) faiis to yield appropriate pressures on the windward si&e
region near and beyond x*/Ro = 13.54 as indicated in Fig. 13. As
done in the Simplified Method of ref. 6,the modified Newtonian
pressure distribution may also be.used throughout the whole bndy
surface in the present method. However, the results (wnich are not
shown in Fig. 12) deviates from the method of characteristics sig-
nificantly. The deviation is also slightly larger than that of the
Simplified Method 9f ref. 6.

Unfortunately no d;ta for the scale factors can be found in -
the literature. However, by inductive reasoning based on the accuracy
of the streamline geometry, one may presume thét the present method
should also yield correct scale factors. Figs. 19 and.20 illustrate
the streamline patterns and scale factors, respectively, for a

spherically capped 20° half-angle cone at M = 6.0 and a = 15°.
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These conditions are the saﬁe as those for the eéperiments in ref., 13.
In the present calculations, the e;perimental préssure distribuzion
of ref. 13 was employed along with the initerpolation formula of Eq.
(56). The streamline patéern folloﬁs a trend similar to that of the
previous cage. The graph of the scale factor réveals that its
variation aiong a streamline is consistent with the movement of the
streamline. This is evidenced by the fact that the scale factors are
proportional to the spacing between two adjacent streamlines. The
streamlines near the windward side wrap around the body a large amount
producing a large spacing between them. Since only reletive values of
the scale factors are of practical interest, their streamwise vari--
étibn shown.in Fig. 20 agrees with the spacing between two adjacent
sgreamlines as indicated in Fig..19.

For the case of a pgraboloid, ihere is no simple geometric
solution for comparison like the Sphefe. However, in order to test
‘the accuracy of Eq. (B-3) for evaluating éhe initial conditions, they
were first applied to a sphere. Using M_= 8.0 and o = 10°, 20°
and 30°, the calculated results along with tpose obtained from the
known geometric solution are presented in Table I. Excellent agree-
ment was obtained for small values of e. Also, the initial data
for the paraboloid, £ = /ETSZE at. M, =8.0 and a= 15° are
compared with those of the Simplified Method of ref. 6, and the
difference in 0 obtained by both methods is within 0;3%. The
calculated streamline geometry and scale factoré are shown in

Figs.l4 and 15, respectively. The general trend of the results
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agrees reasonably well with the previous cases.eicépt for the scale
factors‘of the two.stréamlines, £ = .154° and 174°, The magnitude
of the scale factor shown is its relative value times an arbitrary
constant which was introduced in evaluating the initiél data.
Therefore, it is abserved from the figure that the scale factors

of these two streamlines still exhihit the correct trend.

7.2 Heat Transfer Distributions

The heat transfer distributions for the bodies considered were
calculated in terms of the ratio of the heaging rate ét a local point
to ;hat at the stagnation point or in terms of Nusselt and Reynolds
numbers. The surface pressure distributions used for calculating
the heat transfer results were the same as those used for the stream-
line geometry and scale %actors.

Figures 10 and 11 show the longitudinél énd circumferential
heating rate distribution over a sphere at M = 8.0 and é = 15°,
The present results are also compared with those obtained from the
Simplified Method. In both mathods the laminar heating rates
(at o = 0) of Lees, Zq. (10), were utilized, aznd the agreement of
both methods is very good in the upstréam region. The deviation
downstream is obviecusly due to the use of modified Newtonian
pressures in the Simplified Method, since the Prandtl-Meyer relation
was used in the present method for this region. The two pressure

distributions are shown in Fig., 9. The slightly low values of the

Simplified Methed along ¢ = 180° wme, be attributed ta the nunerical
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truncated error in ref. 26, If.the:meridian line of a sphexe at
- zero angle of attack is replaced by the streamline at an'éngle of
attack, then the heating rate result of Lees (ref. 1) for a sphere
at zero angle of‘attack may ve transformed into Fig. 10: As shown
in Fig. 10, the heating rate results from the present method agrees
with those from ref. 1 as well as the Simplified Method.

The dependency of the héat transfer results on the pressuré
distribution used is also éupported bv Fig. 16. For the case of
the paraboloid f = JETS;W at M = 8,0 and o = 15°, the heating
rates are shown in Figs. 17 and 18. Although the streawline geometry
calculated by both the Simplifigd Method and the pre.::. method
deviates from each cther, the difference in heat trausfer is mainly
due to tﬁe pressure distributions. It is observed from the above
zesults that the heating rates are directly affected by both pressure
distribution and streamiine geometry (which may be obgained inde~
pendent of pressure distribution); the former is more sensitive than
the latter. | .

In Figures 21 to 25 the heat tr.néfer distribution over a
spherically blunted 20° half-angle cone at M_ = 6.0 and « = 15°
is presented. The body shape and flo& conditions are the same as
thcse used by Zakkay in ref. 13. In nrder to compare the results
with the experimental measurements given in ref. 13, the heat
transfer distributions were recast in terms of the ratio of Nusselt

number, to the square root of the Reynolds number, where
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Nu=gRPr/u (E-h) and Re=op R /u . 1In fact, Nu/Re

is a characteristic parameter for laminar heat transfer. To be
consistent with ref. 13, the stagnation heat transfer value of Fay
and Riddel (ref. 43) was used. Although the predicted siagnation
point heat transfér froe ref. 42 is approéimately 10 to 157 higher
than those of Lees (ref. 1), the variation of local heat transfer
differs merely by a comstant throughout.

Fig. 21 shows the heat transfer distribution along the most
windward streamline together with the theoretical predictions of
ref. 10 (method for streamline geometry) and experimental values
of ref. 13. In both ref. 10 and the present method, the laminar
heating rate solution given by Eq. (10) was employed. For
positions away from the windward streamline, ref. 13 also provides
measured heating rate data for éomparison as shown in Figs. 22 to.
25. It is observed that the heating rates calculated by the present
method using pertinent experimental pressures of ref. 13 agree with
the measured values more favorably than those using the hybrid
pressure described in Section 6.3.

The éresent results sre further compared with experimental
data from the Ames Research Center, NASA (ref. 27) and theoretical
values of the Simplified Method of ref. 6 as shown in Figures 26
to 29. Two spherically blunted cones with half-angles of 15° and
30° were considered. The angle of attack varied from 10 to 20
degrees for M = 10.6 using Y = Y, = l.4. For brevity, the

discussion of the results will be confined to those for 15° cone
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half-angle at & = 10°, vhich are presented in Fig. 28. Two
pressure distributions were used in the present method; namely,

the hybrid pressure as given in Section 6.3 and the modified
Newtonlan pressure over tlic whole body surface. The latter was
applied because it was utilized in the Simplified Meéhod. In both

. methods, the laminar heat transfer expression given by Eq. (10) was
used. It is observed that the heating rates predicted by the
Simplified Method ave close to those of the present method when
Modified Newtonian Pressures are used. Also, the heatiné rates for
the Simplified Method fall between those of the present method using
the hybrid pressures anq modified Newtonian pressures. Fairly close
agreement with experimental values is found, except moderate deviation
taking place near the shoulder region.

Near the shoulder the hybrid pressure ¢f Section 6.3 predicted
values higher than the measured values in all four cases of ref. 27.
However, as shown in Figures 21 to 25 the theoretical results
ealculated by the same method employing tﬁe same hybrid pressure
estimation technique are generally lower than the experimental
data of ref. 13. The disagreement between these t&o sets of ex-
perimental results may be attributed to Jifferent test conditions
such as free stream Mac£ number and wall to external total enthalpy
ratio. It was found that the free stream Mach number and the mean
specific heat ratio, Y, affects the heating rate ratio very little

as long as they are in the hypersonic range (M 2> 5). The wall
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to extefnal total enthalpy ratios, ghich were not Indicated in any
of these cases; may have played an influential role.

The e#perimental heating rates results of refs. 13 and 27
indicate that they correlate much better with the laminar than with
the turltulent results. This implies that the laminar boundary layer
is generally stable for hypersonic flows with highly cooledlwalls.
Further verification of this argument is supported by the value of
the Reynolds number based on local fluid.pr0perties at the edge of
boundary layer and the morentum thickness, Reo. This is a parameter
commonly used for determining boundary layer transition. As indicated
in Fig. 28, the value of Re, = 151 at x*/R0 = 16 indicates that the
boundary layer will remain laminar according to the criteria given
in Section 6.2.3.

‘ &he local turbulent heat transfer was calculated using the two
solutioﬁs given in Section 6.2.2 along with the present method for
determining streamline gecmetry and scale factors. The heating rate
results are presented in Figs. 28 and 29 for the most windward stream-
lines. Since the heat transfer parameters for turbulent flows are
quite different from laminar omes, the freestream fluid oroperties
come into the picture, i.e., the heating rate ratio depends upon the
altitude at which the vehicle traveis.

Figs. 28 and 29 are for an altitude of 150,000 feet, a wall
to stagnation temperature ratio of 0.1, and w = 0.76. Very good
agreement between the heating rates of Expreenions I and IT of Section

6.2.2 is obtained. Expression I used the stagnation conditions of
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the extefnal flow as reference gonditions, whereas Expression- IT
used Eckert's reference enthalpy method, Eq. (14).

In Figure 30, the effect of altitﬁde on the turbulent heat
transfer is shown. The turbuient heating rate ratio increases as
the altitude decreases. It is observed that while other flow
parameters ¥emain the same, the turbulent heating raté ratio is
influenced by the freestream pressure, temperature and coefficient
of viscosity. The freestream fluid properties may be eliminated
if the turbulent heat transfer expression is written in terms of
Nu/RealS.

Figure 31 indicates the effect of the relation between the

.visc031ty and temperature on the turbulent heating rates. In the

expression ue/ﬁo = (Te/To)w, as the exponent w® decreases, the
turbulent heating raie ratio increases. For most applications, the
value éf w 1is usually chosen in the neighborhood of 0.76 to 1.0.
However, inside the boundary layer, w Jbeing unity was used b&
both references 1 and é.

Also shown in Fig. 31 is the effect of the reference state on
the turbulent heating rate of ref. 9 (Expression-I in Section 6.2.2).
The results indicate that the predicted heating rates using the
sfagnation state of thé external flow are considerably lower than
those using Eckert's reference enthalpy method, Eq. (14).

It is observed in Figs. 30 and 31, as well as Figs. 28 and 29,
that the results obtained from the presently derived e#pression for

turbulent heating rates, Expression II, agree very favorably with



w§2e

those from ref. 9 (Expression I). Both solutions are influenced
by the freestream properties and the viscosity-temperature relation
in a similar pattern.

The method of ref. 9 (Eﬁpfession I) was based on the highly
cooled wall assumption and a crucial choice of reference state.
Fig. 32 shows the e=ffect of wall temperature on the turbulent
heating.rates using Eckert's reference enthalpy method. It is
observed that the heating rates depend only slightly on the wall to
stagnation enthalpy ratio. If the stagnation state of the outer
flow is used for reference conditions, the heating rates are then
independent of the wall to stagnation enthalpy ra}tio° This agrees

with the experimental data discussed in ref. 9.



VIII. CONCLUSIONS

As a result of the present work, the following conclusions may
be drawm: :

(1) The “axisymmetxic analogue" is applicable for the theo~
retical estimation of laminar and turbulent heat transfer over
general three-dimensional bodies at an angle of attack in hypersonic
flows with highly cooled walls. For flows over three dimensional
bodies under condiéions other than the above, it may be considered
a first order approximation to éhe heat transfér.

(i) .A new method is rigorously éeﬁeloped for determining the
inviscid streamline geometry and pertinent scale factors ever
agisymmetric bodies at an angle of attack. The method requires a
known pressure distribution, which may be theoretical or experimental.

(1ii) The suggested h&brid ﬁressure estimation technique, which
includes the modified Newtonian pressure law, the Prandtl-Meyer
relation, and the second order shock expénsion, yields fairly accurate
results for both streémline geometry and heating rates, However, the
Prandtl-Meyer relation and second order shock expansion must be
applied in the vertical plane of symmetry for Eodies at angles of
attack, and also applied along the meridian line at zero angle of
attack. The circumferential pressure variation is determined by

an interpolation formula.
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(iv) For bodies at an angle of attack, the streamline geometry
and scale factors calculated by the present method agree very well
with those obtained by the kﬂown geometyic solution for the case
of a sphere, and by the method of ch;racteristics for the case of
a spherically blunted cone. Favorable agreement in surface stream-
line patterns was obtained between the Simplified Method of reference
6 and the present method for the region near the stagnation point.
However, significant differences between the two methol: were noted
downstreanm.

(v) The laminar heat transfer distributions calculated by the
present method through the use of axisymmetric analogue compared

_favorably with available experimental measurements and other theo-
retical predictions.

(vi) A new expression for predicting turbulent heat transfer is
derived by utilizing Mager's transformation‘be;ween the incompressible
and compressible skin friction coefficients and correiating the
solutions of the momentum integral eqﬂations through Reynolds analogy.
For highly cooled walls, it yields very favorable agreement with the
solution of Vaglic-iaurin (ref. 9).

(vii) The ratio of local turbulent heat transfer rate to that
at the stagnation point is affected considerably by the freestream
fluid properties and viscosity-temperature relgtion, but only slightly
by the wall to stagnation enthalipy ratio in the range of highly cooled
walls., The predicted turbulent heating rate results with the reference

conditions evaluated at the stagnation state of the external flow are
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considerably lower (about 25%) than those evaluated by Eckert's
reference enthalpy method.

(viii) For hypersonic flows, both laminar and turbulent heating
rates ratio are fairly insensitive to the freestream Mach number and
the mean specific‘heats ratio after the normal shock.

(ix) The heat transfer distribution is affected by both
pressufe distribution and stfeamline geometry. However, the pressure

has more effect than the streamline geometry.
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a simple transformation.

IX. APPENDICES

Appendix A

Geometric Solution of Streamline Geometry
and Scale Factor for a Sphere

The method for calculating the streamline geometry and the scale
factors developed in Section 6.3 is applicable to general three-
dimensional bodies at aﬂ angle of attack. For the particular case of
a sphere traveling at an angle of attack with respect to its original

axis of symmetry, a closed form geometric solution can be obtained by

As showm in Fig. 2, the original axis of symmetry is x', and AC
is a meridian line through the most forwéfd point, A, Since any axis
through the center of a sphere is a geometric axis of symmetry, then

a new axis of symmetry, xw*, which coincides with the free strzam

. velocity is formed. It may be referred to as the wind axis of symmetry.

The streamlines emanating from the stagnation point, B, are then meri-
dian lines with respect to the wind axis of symmétry, xw*. Hence, the
stfeamline geometry is known for the case of a sphere.

To facilitate the calculation, the solution in the wind coordi-
nates is transformed to the body coordinates as follows,

First, cénsider the spherical triangle, ABC. (See.sketch below).
For a given angle of attack &, specified streamline coordiﬁate 8, and
arc length along of the streamline S, there results with the aid of

ref. 44,

~56~-
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Center
of
sphere
.‘\0
. egd}}
ox*
meridian
line
- point
windward
line
§’=.Arccos(cosacos§'- sinosinScosg) (A-1)
X* = 1 - cosx (a-2)
- sinSsing -
¢ = Arcsin(——— sinx ) (A-3)
- sinasinB . : -
0 = Arcsin(———— e ) : (A-4)
From Fig. 2,
ﬁé = ginS . (A-5)
where .
FeX T To8 aaf o2
KR ¥ TR MM TR
o (.} o

Note that in spherical trigonometry, the sides normalized by the radius
of the sphere are expressed in radians.

' The above equations give the desirad streamline geometry and scale
f;ctors. The quantity ( ) is not needed here; however, it is required
for spherically blunted bodies. Therefore, differentiating Eq. (A-8)

with respect to B, one obtains



30 _ _ sinasinBeosx 3%, , sinacosB _
cosd oo = ——-"—-—smz; Ge) * Teimm (4-6)

Previously it was found in Section 6.3 that
3% _ _ ;
38 h?_ sin6
Substituting this equation into Eq. (A-6) and simplifying yield

h,sin8tand

a8 _ sirxcos$

B tan¥ sinXcosd

(a-7)



Appendix B

Evaluation of Initial Conditions for Calculating Streamline
Geometry and Scale Factor over a Body of Revolution at an
Angle of Attack

In order to integrate the simultaneous differential equations for
calculating the streamline geometry and scale factor over a general
three-dimensional body, as developed in Section 6.3, a set Qf initial
conditions is required. The evaluation of these initial conditions
for a body of revolution at an angle'of attack is illtstréted herea

With reference to Fig. 4, the initial point is determined by
(x: R ¢i). The subscript "i" denotes the quantities at the initial

%
point. For a given Xgs let

_ ¥ *
€ =X =X
o= le{ao(A + A .et A 62.+ ) + fe[al (Ajn+ A et A 52+ )
i ® ol 02 ot 10 11 127 °°°°
+ Ielaz A, +A,.e + A 62 + ) +
20 21 22 LN LI ]
2
- ] n £ _ -
fi fo + foe -+ fo 2 + oes
52
o £ n ny & v
fi fo + foe + fo 5t
f" - f" + flll KR f'v -§—2—
1% T V% 2
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3

b3
Siﬂ¢i“¢i~'3"‘ +-oo

' 2

. ¢i
COSd)i:l"'z"‘ + .00

K
vhere X, is the distance from the most forward point of the body to

the stagnation point along the axis of symmetry ande a s @y .o and

A@ s Aol... are constants.

]

If the initial point x, 1is chosen very close to the stagunation

e e

E3 &
point (xo), then e(= x; - xo) is a very small quantity. Hence, the

above equations can be written, with O(ez) terms dropped, as

¢ = 8 lel%

= t
fi fo + foe

Y "
fi = fo + foe

"o e "t
fi fo + fo €

sin ¢i = ¢i

cos ¢i =1

Using these equations in Eq. (38) along with Eq. (50) one
obtains after a tedious munipulation,

(1+ff)
a = e

S, S (B--1)
1]
(] fofo
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Note that the left-hand side of Eq. (B-1) is the ratio of two
principal radii of curvature at the stagnation point and that
A 1s a constant which distinguishes the different streamlines.

. ) %
For a given angle of attack, o, and a body shape, f = £(x ),

the quantities in Eq. (B-1) may be determined approximately by

f; = cot o . (B-2)

Eq. (B-2) implies that the vector normal to the body surface at the
stagnation point coincides with the direction of the free stream
velocity. This is exactly true for the case of a sphere (ref. 41).

With a found as above, there results

* * oo
- Xy =X, + ¢ | (B-3a)
o, = &lcl% (8-31)
and from Eq. (39)
A a, f i o -1
= B-3c
Arctan («[—+ f'2 (B-3c)

For the scale factor, let

. h, =8B lazlb

. (8-3d)
2i



then
Dh h,f' cos © B [elb cos .0 f
(%—%) = (D32 - 2 ) = — - i (.1?. i ..f_i.) (B-3e)
. " €
1 T R A N i

Substitution of Eqs. (B-3) into Eq. (49) yields after considerable

munipulation
b=a » (3-4)
and B can be an arbitrary comstant. "

. The results of Eqs. (B-1) and (B-4) are exactly the same as

those obtained from ref. 26 using the same procedure.
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as the independent variable, the initial values for x;, ¢, 6, é}-

Appendix C

Computational Procedure for Case
of Spherically Blunted Cone

The complete computational procedure for calculating. the stream-
line géometry,'scale factors and heating rates for spherically blunted
cones traveling at hypersonic speeds at an angle of attack consists of
three parts:'

(1) Evaluation of the initial conditions and constants.

" (2) Integration of the heating rate equations.

(3) Calculation of streamline géometr& and the scale factors.

The first and second parts are written in a main program and the
third part written in five separate subprograms corresponding to five

sequentiél surface pressure conditions, as indicated in Section C-3.

C~1 Evaluation of the Initial Conditions and Constants

For a spherically blunted cone with half-angle Gc traveling at a
given freestream Mach number, altitude and at an angle of attack,

ot Moo Yo © and 6c° Using

the following are known quantities: M_, P, T

S, the arc length measured from the stagnation point along a streamline,

0
81
and h2 are obtained from the geometric solution in Appendix A, The

i
initial point is chosen one step size from the stagnation point, i.e.,

AsilRJ = 0.01.

There are three kinds of constants in the program, i.e., (a) input

constants which depend on the body shape, flight conditions and selected

-63-
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flow parameters, (b) functional constants which are calculated by the
equations in Section VI from kﬁown input constants, and (¢) defined
constants which are defined for the purpose of simplifying the calcula-
tion.

The input constants are: M_, P , T

s Moo Yoo Va Ol‘; 6(‘.’ Rg9 Pr,
T /T and w.
v o

. . % . *
The functional constanﬁg are: Pw/?o, X fo, fo’ fg, Ro’ xj, fj’
£2, M, P /P, 8 and v .
3’ ¢’ q/ o’ °q q .
The defined constants are: AC, ck’ Cm, g, Cq, qu, and th.

-2 Integration of the Heating Rate Equations

A.2,1 Laminar Heating Rates

Equation (10) of Section 6.2 is

u
. P ey p1/2
qw P° V& 20
9 ) e /2 e
S P e, 2 1 .
o [ff ~——h, ds] "2
o Po Vw 2

where r is replaced by h2. From the isentropic flow relation with an

effective y, there results, according to Lees,

&= M1e —2n - (¥
© (Ym"l)Mu o
. czm [ - (-i;‘?-)g]l/ 2 c-2)
(o]

where
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G is given in Eq. (11) of Section 6.2. Using the dnfined constants,

one has

1/4

G = (gCEC) whe:g cC=1-~ Pw/Po

After siuplifying, the ratio of laminar heating rate at the surface to

that at the stagnation point becomes

Wh
% /5 wm? as)t/?
o o 2
wvhere
Rb1/2
¢ =0 (c-3a)
4 2(cg) ’
we - @5t/ (C-3b)
[+ [+]

“The denominator in Eq. (C-3) is integrated numerically by Simpson's one-
third rule with h2 obtained from a subprogram described in the next sec-
tion. The initial value of the integral is obtained by using the same

approach described in Appendix B, i.e., let

3

% %
s x =%, le] <<

aO
6y = Alel

=
1

b
B, lel

0
i

£ + f'e
o o
LY | "

£ fo + fos

1" = 11] T
fi fo + foe
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ds = v/(dx)2 + (fd¢)2

2a -2
/1+f'2+A 22l © ae

then

2a -2

2 as = ¢ wBl|c| °/{+fi +A2a2f2|| ° "4 (c-5)
1

s

= fo i

With the use of Eq. (50) for the surface pressure, it can be seen that

R a2
——5l€ << 1
1+ £!
o
Hence, ' ' l2a +2
: 2a 2 K,|el|2a K 4 K le
21/2,, € 1 2 L
Ii * =B g fosina‘el {2(a 1) + 8 " [ad+2 ' 4a°+2 1}
(c-6)
.where
A:aﬁfz ) f;zsinza
K, = —>3, K, = —2——p
I 2 gapr?
o [\

Since the value of the right-hand side is of order of 84, I1 is
seen to be negligibly small compared with the value of the first inte-
gration from the initial point. (It requires two increments to perform
oﬁe integration in using Simpson's one-third rule.) Hence, in practice,

it is appropriate to assume that the heating rates ratic is very clcse

to unity at the initial point,

Gy = 0,999
1
9"0

then



C W.h 2

2dS“-‘(qizi}
12 0.999

= f (c-7)

i
Equation (C-7) is comparable with Eq. (C-6) since both Wi and h2 are
i
~ of order of ¢ and thus (Wih\2 ):2 = 0(sa)°
i

C.2.2 Turbulent Heating Rates Expression I

Equations (15), (16), and (17) of Section 6.2.2 nre:

o /2, .
Iy - Pel¥eteRy cf (c-8)
qwo 2pouove"cur

n Cf* +2=0.4 /é_Cf*.-l/Z - (C~9)

—e_ £ p ds] (c-10)

one obtains
12 Y 2 .1/2

H =5 [1 + ——] ( )

.e (Ym"l)Mz

[

1/2

As mentioned in Section 6.2.2, it is appropriate to evaluate the refer-

ence condition quantities at the stagnation state of the external flow.

Thus,
1l
] eu e Y eu e (P '?-i-gm Voo Vmp o
emmave 52 eeeee— 23 S 5 ——
pr"r PoVo Po Ve Yo

where
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Yo Te w
— = (=)
u T
o o L]

is used. Upon substitution of these equations, Eq. (C-10) becomes

PV
Z = zh{2.62c21/2(-§——3) .-

) -h2
s _r_'wl'r*gm P811/2,
fo @ [1- (Po) 17 n,d8} (c-11)
where Eq. (C-2) has been used for ue/Vw.
FL.L' qu (C"'g),
1
Pelaty } Plat, . (11;3*89 22
Yy Yo o=, Vo
therefore, Eq. (C-8) becomes
’ 4y P %ﬁgw “e ~
== C () — C_% (c-12)
& et vt !
vhere
- 1 poVWRO) 1/2 (c-13)
qt . 1/4 u
/Q(Cgcz) o

For a known surface pressure distribution and scale factor, z is

readily evaluated from Eq. (C-11). Once Z fs known, C.* is d' “-:wined

by Eq. (18) in Section 6.2.2. The constant coefficients are o ' 'ued

with the aid of Eq. (C-9) for 2 < Z < 14

0.05617 * 1.5243313 _ 6,3495944

Z 22 ZS

c

% = -
¢ 0.001052

+ 90.863065 _ 268.7737

7" 2°

(C-14)
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The plot of C.* vs., Z is shown in Fig: 33. Finally, the righv side

£
of Eq. (C-8) is found upon substitution,

C.2.3 Turbulent Heating Rates Expression II

Eq. (33) of Section 6.2.3

. 1.05 _ 0.8 0.05 0,25 0.5
q, _ 0.5, 1.1 5 1.25  0.25 1.25

o G(pov"") o [fope ey h2

(c-15)
The reference properties in the above equation are evaluated with the
aid of Eq. (l4) in Section 6.2. To be consistent with Lees' derivation

of the expression for ue/V°° (Eq. (C-8)), where

¥-1o

one may assu.s that the fluid is a perfect gas by using an effective
sbecific.ratio, Y. Hence, Eq. (l4-a) is used in the prégram with an

adoptive y,, and thus,

T
£ - (28
7= )
[} [+
2 _ 2 . Py-g _
The» Eq. (l4-a) becomes
T P Tw 3 P\
-T-’E = 0.5(5--)g + 0.5 5 + 0,22 /pr (1 - )°) (C-16)
[+] [+ 0 o]

Following the same procedure as previously, one obtains



«70-

+

1.05

==+ 0.8g0 T _ 1 ,u
. ¢ (;1{) 3 (__r_)0.0S(m T—l)-gh 0.25
qr " T v 2
i = LY b (C-17)
g 1.25u_ T 1 !
S Py _e , 0.25(w - ::—) 1.25 0.2
U, &)Y v & §-1'h, " "7ds]
) ©® o
where
0.0417Rb0°5 pOVoo 0.3
Cor = 0.25 ) (c-18)
q (Cng) ¢ Ho

C.2,3 Reynolds Numbers

The Reynolds number based or local properties at the edge of
boundary layer and a distance along a streamline from the stagnation

rrint is

Following the same procedure as in the previous section, one

obtaiﬁs,

oV u _ =-gw )
Re =22 (_S)(ll)Y S (c-19)
[ H vV P
o © g

The Reynolds number based on local properties at the edge of boun-

dary layer and the laminar momentum thickness is given by Eq. (34) as

0.66[s5 p u n hlas)t/?
0o eee 2
Re, . = {C-20)
© uehz

where 1 has, been replaced by h2. To be consistent with Lees' theory,

one assumes

©

eue

OuO

= L
P
o

-

Thus, Eg. {C-20) be.cmes
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Using Eén (C-1) to eliminate the integral and h,, it becomes

1/4Po"= 1/2,p,1 - gu P.g1/2
0.66c,c, /2D " B - e

- o o 0 _
Rey = z (c-21)
()
qwo laminar

These Reynolds numbers are calculated for the purpose of locating

a possible transition region.

€.3 Calculation of Streamiine Geometry and Scale Factors

Fhe hyLrid surface pressure estimation technique forces the calcu-
lation of streamline geometry and scale factors to proceed from one
region to another, accordiné to the applicability of different theories
 described in Section 6.4.1. In consquence, a typicai streanline will

flow through five successive regions as follows:

{1) Modified Newtonian Region (M.N.) - In this region, the stream-
iine iies between the stagnation point and the "matching point." The
modified Newtonian pressure law is used for estimating surface pressures.

(2) Modified Newtonian and Prandtl-Meyer Mixed Region I (M.N. &

P-M I) - After the "matching point," an interpolation formula for pres-
sure distribution, Eq. (52), should be used. In this region, the stream-

*
1ine 1ies between the "matching point," corresponding to axial axis Xq’
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) *
and a point on the body surface corresponding to axial axis, Xy s such
that (Pr,180)a¥o along the leeward line falls in the Prandtl-Meyer
region while (Pr)a=o along the meridian line and (Pr,o)a¥o along the
windward line still vemain in the Newtonian region.

(3; Modified Newtonian and Prandti-Meyer Mixed Region II (M.N. &
P-M II) - fn this region the streamline lies between two points corres-
ponding to a#ial coordinates x: and xz, respectively. The surface
pressures along the leeward and meridian lines fall in the Prandtl-
Meyer region while the windward line still remains modified Newtonian.

(4) Prandtl-Meyer Region (P-M) ~ In this region the streamline

% %
lies between two points corresponding to axial coordinates Xy and xj.
The Prandtl-Meyer relations are then applied to all three (leeward,
meridian and windward) lines.

(5) Second-Order Shock Expansion Over Conical Surface - Over the

cone surface, the second-order shock expansion method, Eqs. (54) is
used for estimating surface pressures along the leeward, meridian and
winéward lines. Eq. (56) is employed for interpolation. The functions
A; B, and E in Eq. (565 are determined with pressures along the above
three ilines. The pressure along ¢ = 90° (meridian) line at an angle of
attack is assumed to be that along the same line at zero angle of
attack, as noted by ref. 13.

These regions are illustrated in the sketch on the next page.

The resulting expressions for pressure distribution and necessary
differential equations for computation are shown in Charts C-1 and C-2,

Note that the differential equations listed in Chart C-2 are also good
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for a general body of revolution. The set of simultaneous differential

equations is integrated along a streamline by fourth order Runge-Kutta

method with the initial values determined by Eqs. (61). The significance

of defining S , C,_ and F's in Chart C-2 is twofold, i.e., to reduce the

computer time drastically and to eliminate chances of making mistakes.
The above five regions with different pressure ¢ “ditions result

in five separate subprograms. As the streamline proceeds in the main
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program, one of the above subprograms is call according to the region
the streamline will fall in. .

The boundaries of each region, x:, x:, x: vary with M5 o and
body shape and differ from one streamline to another; nevertheless,

they are determined sélely by the matching criteria 6q or-(P/Po)q along

the streamline, or meridian or windward line.
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Chart C-2' Differential equations for calculating streamline
geometry and scale factor over a blunted cone
Ezﬁzﬁi;n Differential equatlons
o
Dx#* t
e D5 " F
S
P—Q = --‘—:-'
(11) DSTF -
- cto
D9 reSt cht £ S,
(111) DS B, fF
]
v) 3}:'2' =24 el
DS ° fF
2
D_ 38 £1C, 20 st(ff"'f' F) popo, £'Se
25 G = " FF Gs )+h["'""'(ﬁ‘")7" DS(DS+ R
. e 2
F C
(v) 1 : 39
+Fg[(Fect+FftaB h (FS+ )
Fy F,
A hyC.S (FF + F) - F(FS, - FL)
g
o p w2 P '
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Appendix D

Computer Program for Calculating Streamline, Scale Factor, and Laminar
and Turbulent Heating Rates over a Spherically Blunted Cone at an

Angle of Attack

The complete computer program for calculating the streamline

’

geometry, scale factors and laminar and turbulent heating rates over

a spherically blunted cone is written very closely following the

procedure described in Appendix C. The following correspondences

are observed:

(1)

(2)

(3)

(4)

(5)

Y"MAIN" program corresponds to

A.l Evaluation of the inipial conditions and constants, and
A.Z Integration of the heating rates equations.

“RUN1L" subprogram corresponds to

A.3.(1) Calculation of étreamline geoﬁetry and scale factors

in Modified Newtonian Region

. "RUN2" subprogram corresponds to

A.3.(2) Calculation of streamline geometry and scale factors
in Modified Newtoﬁian and Prandtl-Meyer Mixed Region I

"RUN3" subprogram corresponds to A

A.3.(3) Calculation of streamline geometry and scale factors
in Modified Newtonian and Prandtl-Meyer Mixed Region I

“"RUN4" subprogram corresponds co

A, ) Calculation of streamline geometry and scale factors

in Prandtl-Meyer Region '

77~
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(6)

n

YRUN5" subprogram corxesponds to

A.3.(5) Calculation of streamline geometry and scale factors
over cone surface,

"COLLAR" subprogram corresponds to the evaluation of

initial pressure for integrating the Prandtl~Me§er relations,

Bq. (57).
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T C TAI . FCRTRAN SCURCE LIST + ..
SCURCE STATENMENT

$IBFTC. MAIN

SHOaOOn

10

FRGGRAN FCR CALCULATING STREAMLINEy SCALE FACTCRS, AND LANMINAR
AND TURBULENT HEATINC RATES CVER A SPHERICALLY BLUNTED CCAWE AT
- BN ANGLE CF ATTACK AT HICH SFEELS

COMMCN CoCKyCAySAyGANsCyHsPCyXJI4FJyDFJ /uBC/BCL,B02,B03,

181,62,83,4C1,02,4C3

EXTERNAL NOLMNUN

CIMENSTION SM(3), SM1(3), SK2(3)

READ (5, 501) BC1l, B1,s Cly EL2, E24 C2, TNMC
READ (53 5C1) BC2y B3y C24 ALPFA, CR1, CR2, RE
READ (54 501) F¥, GAM,y FCOy TCCs PRy €My TH, V
READ (5, 505) K

AL = ALPHA/57.298716E
SA = SIN(AL)
CA = COS(AL)

G = (CAM ~1.)/C&NM

ce 1./7CGAN - CG*CHM

CK = (2.70((GAM + 1 )%FEEFM)IFH(1e/C) (2. ¥CAMEFVAFM ~ CGAN +1.)/
1 (CGAN + 1)) (1a/(CAY - 1.))

C =1 - CK
“FC = C*CA*CA + CK
CFC = CA/SA
FC = SA
XG = 1. — CA .
LCFC = ~1o /FO%%2
RS = 1.C
A= 1.0
TN = TUD/ETL29ET77SE
XJ = 1o ~ CCSUT™)

FJ SCRT(2.%XJ = XJ*¥XJ)

LFJ = (1. - XJ) /FJ
RNMQ=1.352C8S4+142584CTG%CK+12e 45151 T#CK¥CK~-162T€TEBXCHF*3
FC = (2./7(2s + (CAN = 1.)RRMEHFRMC)I*F{1a/C)

CELQ = ARSIN(SGRT((PC ~ CK}/C)) :

.C¥ = TAN(ECELC)

CE = TAN(CELC - AL)

RRNUG = SQRT(( CGAME 1.)/(CAW -~ 1. ))*ATﬁh(SCRI((CﬁP -1 )%

1 (RMGHRMQ = 1o) / (CANM + 1o)))- ATAN(SQRTIRNMECIRKEC - 1.))

20 WRITE (&y 6C1l) F¥. GAM,y PCO, TCCy PR, T¥s Vy ALPHA. XCs RSy

1 FOs DFCy COFO, &, CR1, CR2y RE,s CW
WRITE (&, €C2)
KRITE (6, 62C) CK, RNCy PGy CELGC,y, RNUQy TVL, Xdy FJ

LAMINAR HEAT TRANSFER Y LESTER LEES
RF(Y) = Y% SCRT(le =Y%%C)
CQ = SCRTIRSI/{Z.%(C¥C)4%062E)

TURBULENT HEAT TRANSFER EBY VAGLIC~LAURIN

TRE(Y) = (CR1 - RECCV3I#Y#%G + RECCY + CR2%TW

UF{Y) = SCCLIU/Y

2E(SINYy R) = ALEC(2.€2%LRNM/PXSINT)

CF1(ZR) = 0.€02C€21¢ = Co0224ECL4%IR - Q. 17&?3241*ZR*?
3 17.361C2%ZR%%3 = 46483204 %IRI*¥4 4 44,C17C25% L5



~80-

112065 T € TAI FORTRAN SOURCE LIST MAIN.
ISN SCURCE STATEMENT
52 CF2(ZR) = 0.C01052 ~ CoCEEL1TAZR + 16H243312%IR*ZR ~
1 643495944%IR%%43 + GC8€206Z22R¥¥) ~ 2664 TI3THIR%4S
53 RG = 1717.55C65
54 “ RECCV = RE 4PR¥%(0.332332332
5% CL = 1o 4+ Se/FFAX2
56 SECL = SGRT(CL)
51 €C = 1./7(GAN - 1) - CN
€0 CR = 1./(CGAN - 1.’ + CF
61 CP = 14/7GANM + CA(H
62 LRN = 243%(1.+CH) * FCC/{ CKAVASCRTIRCH*TCCI*(CHCL)*X{1s + CHM}
1 #1ed4%¥%(Ceb + CM) HFNIF(1le+2.%CH))
63 CET = SQRT{RS*URNM/2.) / (CHEXCL)IA*CW25
c
C TUREBULENT HEAT TRANSFER EY TRANSFCRMATICN
64 €2 = 0.CE3{0F ~ Y1o/(CGAN = 1.))
€5 | €4 = 025%(CV =~ 1o/(CEN - 1la}:i
66 CN = 1.05/CAN + Co E8%CXCH
€1 “€C = 1.25/GAMN
10 ENF(Y) = Y% GN % TRIIGZ ¥ U * R#¥*0.25
71 FDF(Y) = Y¥& GL % TR*¥%¥G4 #* U % R¥*1,25
12 CCR =0.0417*SQRT(R5)*URN**OcB/(G*C*CL)**O.ZS
C .
13 CREN = 0.66* COXSERTICL*HT .. 5%HURM)
C .
-4 ' KRITE (&9 633) RECCYs Cl. URK,y CCs CQTy CGRy CRENM
5 EC 460 ¥ = 1y K :
-6 SK1(1) = C.0
17 - SM2(1) = C.0
1CO SINl = 0.0
101 SIM2 = 0.0
102 25 READ (54 507 &4 He XEDs PELs FACTGR
103 $ = G.01
1C4 30 YRITE (69 612)
105 E = ED/57.265776%
1Cés XS = ARCOS(CA®CCS(S) + Sﬁ%SIA(S)*CGS(E))
107 X = 1o ~ COS(XS)
110 P = ARQTN(SIh(S)*QIR(P)/ - IES))
111 CIFIBL, 1 TeS0.) P =ARCCS(( Cﬂ5{<)~ COSIXSIHCAY/{ SIN(XSI*SAY)
il4 T o= 4 ’"'(SAﬂSlNiB)/QIR(XS)l
115 (7 (BLeLTa50e) T = ARGCS({CA~ CCS(S)* CCS(XS)I/{ SIN(S)* SIN{XS)))
120 R = SIN(S)
121 - TB = RE* SIN(TIATINI ()/TANIXS)-SA¥ COS{BI}/SIN(XS)/ COS(T)
122 FD = P % 57.29577¢%
123 TC = T % 574292 7%
124 KRITE {6y ¢1C) ¥, BC
125 WRITE { 64 616} Sy Xy PCy TDy R
12¢ CALL RUN} (X9 Py Ty Ry TB, XAsPAyTARA,TBA)
127 X=X+ XA
13¢ F. = F + PA
131 T=T7T+TA
122 R =R+ RA
133 18 = TE + TB: .
134 LF = (1o = X)/SQRT(2.%X = X*X)

125 Y = CH{DF#CA 4 SAXCLS(F))*42/(1e + DF*DF) + CK
136 K = WF(Y)



20€5 T C TAI FCRTRAN SCURCE LIST FMAIN
ISN SCURCE STATEFENT
137 U = UCFLY)
140 SM (1) = W#RAR
141 ¢ = 0999
142 SIM = (CO¥WAR/C)I=%2
143 REYS = URMIYV#XCEIUXS
144 REYM = CREN¥W/( Y*¥{(G3CN)*Q)
145 FD = P % 5742957795
146 TC = T % 572957795
147 =8+ H

. 15¢C YRITE(Gy 616) Sy Xo PLCy TD; Ry Yy REYM, REYS, @

151 TT = ARSIN(SAX¥SIN(B)I/SIN(TN))
152 S8 = 2,ATAN(TAN((TMHAL) /2. )4COS({B+TTI/2.)/COSU{E~TT)/ 21} ~2a%K
153 AN = SS/H/2. : '
154 RRNN = NN
155 . K= H + (83 - RRN#E¥2.) / (2.%RNN)
156 LO 3¢ L = 14 NN
157 LO 3¢ N = 29 3
16 CALL RUN1 tXs Ps Ts Ry T8y XAy PAsTAFALTBA)
161 X=X+ XA
162 F =P + PA
163 T=T7T+ TA
164 R =R+ RA
1€5 TEé = T8 + TBA -
1€6 CF = (1o = X)/SCRT{2.%X ~ X%*X)
167 Y = CX(DF*CA + SA*CCS{F))*%2/{1l. + DF¥CF) + CK
17¢ ko= WF(Y)
171 U = UF(Y)
172 TR = TRF(Y)
173 MR} = WXRAR
174 SKIIN) = UdYIREPER
1 SW2(N)} = FDFLY)
iié 36 £ = £ + H
2C¢C FD = P % 57.29577¢3
201 TC = T % 57.2957155
202 SIM = SIM 4 EX(SM (1} + 4.%SK (2) + SN (3))/3.
&03 SIF1L = SIKL 4 Ex(SML(1) + 4.%SF1(2) + SM1{3))/2.
204 SIN2 = SIN2 + EX(SNM2(1) + 4.%SM2(2) + SK2(3))/3.

2C5 € = COHIR / SERT(SIN)

206 2R = le/ZF{Sil¥1ls R}

207 €1l = CCTHYHREPHFULCFLIZR)

21¢ . €2 = COR%FNFIY)/E1N2%4CeZ

211 FEYS = UREAYI%RLEFURS

212 REYN = CRENXW/({ Y¥H{CFCN)EQ)

213 WRITE(&, 610} Sy Xy PLy TDy Ry Yy REYE, REYS, G, Ql, €2
214 SKO{1) = 5K (3)

215 SK1(1) = SK1(3)

216 K1) = Sk2(3)

211 40 IF (Y «LTe. PR) CGC TC *C
222 39 IF {X oCEe XJ) CC TC 4CC
226 50 #AU = RNUC + DELC + AL - ATAN(CF)

227 CALL CCLLAR (Gidy Gy RMCs RNUy PT)
230 PRITE (64 604)

231 . KRITE (65 62C) LFs PTy RNUy ¥

232 IF (CF.LE. Ci) CC TC G2

235 AN = KN - L

.~



12065
ISKN

236
237
240
241
242
243
244
245
246
247
25¢
251

o

£ 4

253
254
255
25¢
287
260
2€1
2863
264
265

26¢&

a6t
276
211
272
213
274
275
216
211
3¢€0
3C1
302
3C5
311
312
313
314
315
316
317
320
321
322
323
324
325
32¢
327
330
331

70

96
92

T C TAL

FORTRAN SCURCE ST PAIN.
SCURCE STATENENT )
£C 9C L = 1, NN
EO 7C N = 24 3
CALL RUNZ lX, Fs Te Rs TB, PT,XA:PA:TA;RA’TEA’ PTA)
X=X + XA
F=F + P2
T=7T+TA
R=R+ RA |
TE = TR + TBA )
FT = PT + PTA
EF = {1e = XiFSERT(Z2.%X = X*X}
YA = SEQRT{1l. + LF:LF)
CF = CCS{P)
Y ={CH{{CFRCATSA) /YA H224CKIH(CP *Z *CP Y/£2. + PT*
1 (Cp *%2 -CF }/2. +PC F(CH(CF/YAYF%2 +CK)=SIN(P)*:2
K = KF{Y)
U = UF{Y}
TR = TRF{Y}
S¥ (N} = W¥R3IR
SKIINY = UZFYHKCEPER
"SM2(K) = FEFLY)
S$=8+H X
FC = P % 57.29577%%
IR = T %+ 87.29877%5
SIK = SIN 4 EX{Sk (1) + 4.3SK (2} + SM (2))/3.
SIMY = SIMI + EXISNI(1T] 4 4.%8SNM1(Z) + SM1{3))/3.
SINZ = SINZ + EX{SN2(1) + 4.3SK2{2) + SK2(2)1)}/3,

€ = CExW*R / SERTISIM)
1./ZF({SIN1, R)
COTFYRFCPIULCF2(2R)
CQREFNFUY I/7SIM2%%Caz

= URMIYHRCLEURS

REYNM = CRENMFR/{ YL (C32CEIFQ)
WRITE{ G,
W (1) =
S¥1{1)

SM (3}
SK1{3}
p2{1} SM2(3}
IF (X <CGE. XJ)
IF {CF.LE. C¥

€G TC 4GC
} GO T0 <2

FRNU = RNUG + DELE ~ ATAM(LCF)
CALL CCLLAR {G2AM, C; RNMQC, RNL, P}
KRITE (69 60¢)

WRITE (65 62C) DF, PMy RRU, Y

M = Kk - L

B0 S2 L = 1y NN

fR SS N =2, 3

CALL RUN3

X=X ¢+ XA

F=PF 4 PA

T=7T+TA

R =R+ RA

e = T8 + TRae

ET = PT + PTS

FM = PN &+ PEA

EF = (1s ~ XI/SCRT(Z24%X - X¥X)

SCGRY({l. + CF#*EF)

616) S¢ Xs PLsy TDs Ry, Yy REYMs REYS; €,

€i, Q2

(X, Pe Ty Rg TB’ PT,FM, XAQPAQTA1RA7TBb9FTA)Pkﬁ)



12065
ISK

332
333

334
335
33¢
331
340
341
. 342
344
345
346
341
350
351
352
353
354
355
356
351
360
3¢1
3€2
3€3
3€6
3%2
373
374
375
376
317
4C0O
401
4C2
4C3
404
405
4C6
4C7
410
411
412
413

414
415
41¢
417
420
421
422
424
425

S8
10¢

105

1

"X

i

-83-

T C TAl FORTRAN SOURCE LIST KAIN:
SCURCE STATENERT

ce = COS(P) :
Y = (CH({DCF¥CA4SA)/YAY¥2 +CKIX(CP %2 + CP 1/2.
+ PTH(CP *%2 - CP }/2. + FO ¥PUAESIN(P) *%2

W KF(Y)

U LECY)

TR = TRFLY)

SFO(N) = KERAR

SML(N) Uy CPER

SF2{N) FCF{Y}

€ = S + H

FD * 5742951765

T0 % 5T7.29871GE

SI1H SIN  + EX{SM (1) + 444%8M (2} + §
SIMY SIVM1 + EX{SMI{1) + 4.%S¥1{2) 4+ Sitl
SIKZ = SIF2 + EH{SM2(1) 4 4.3SMF2(2) + SH2(:
€.= CQ*WXR / SCRT(SIM)

I

[}

{1
LI | I e

2R = 1./ZF({SIM1ly R}
€l = COTY:XEPHURCF2(ZR)
€2 = CCR*FNFIY)/SIK2%3Ca2

REYS = URKMRYHXLEAUHS

REYFK = CREM*R/( Y3:H(CHCK)*Q)

WRITE(&y 616) S; Xy PLy TDs Ry Yy REYN, REYS, €5 €1, G2
Sk 1) = §¥ (3) ’
SN1(1) SK1(3)

SKzZ(1}) SK2(3)

IF (X «GE. XJ} GC TC 4CC

If { DF oLE. CE ) €C 7L 1iC¢C

RAU = RNUG + DELC =AL -~ ATAN(CF)

CALL CCLLAR (G2k; C» RFCy RALy; PE)

KRITE (&y 6CE)

KRITE (&s 62C) CFy PEy RAUy Y

AN = NN - L

£C 18 L = 13 KN

LC 1C5 N = 24 2 :

CALL RUN4 (Xy Py Ty Ry TBy PTFMyPByXAPASTAsRASTBASPTAZFPHA,PRA)
= X + XA }
F.= F + PA

T =T+ TA

R = R + RA

TE = TR + T8¢!

FT = PT + PTA

Fr = PM + Pu#

PR = PB + PBA

CP = CCS{F)

Y, = Co5%(( PB+PT)%CF *¥2 + [(PB-PTY%CP ~ } 4+
PCHPNHSIN(P)%%2

W = KF(Y)

U = UF(Y)

TR = TRFLY)

SPO{N) = WHRER

SF1IN) = Usy3%GP#

SF2(NY = FDFLY)

S =%+ H

FC = P % 57.2957765
TD = T % 57.29:571$8



12065
ISKN

42¢
4271
430
431
432
433
434
43%
. 436
437
440
441
&42
443
4477
450
451
452
453
454
-485%
456
457
460
451
462
463
L4E4
4€5
46¢
467
470
412
413
4714
415
416
- 477
500
- 501
S¢2
503
5C4
505
506
507
510
511
515
511
520
521
522

108
400

460

4632

" 465

490

501
£05
€01

8l

T € TAI
SCURCE STATEFENT

SIN
sIpl
S1kK2
€ = CO%W*R / SERT(SIM)

2R = 1./ZF{SIM1, R)

€1 COTRY=CPIUSCF2(2R)

€2 CCRH¥FNFLY )} /SIM2%2C a2
REYS = URMEYIXLEHU*S

REYE = CREMXW/({ Y¥E:(CACN)IXQ)
WRITE(G6y €16) Sy X5 PLy TDy
SKo(1) SH (3}
SHM1(3)

gIV.Z(I) Si2(3)

IF ( X «GEe XJ ) GG TC 4CO
k= E%FACTOR

EF = DFJ

WRITE {6, 61C) K, BD

LC 4€5 L 1, &CC

EC 4€3 N 2+ 3.

CALL RUNS {Xy Py Ty Ry TBy
b 4 X + XA .

F P+ PA

T+ TA

R + RA

= TB + TBA

KFLY)

UFLY)
TR = TRF{Y)

SMOIN) = WERAR

SFIIN) UkYH¥ECPER

SM2IN) FOFLY)

€= S 4+ H
* 57.2957795

¥ 57.2957165

SIN
SIi1 + E{SK1{l) 4 4.

nu

1}

]

R

(W N ¢
b
-
—y
ot
-
o

LA LI T

T
R
B
W
U

B

SIK

+ HFE(SM (1) + 4.%SHK

FORTRAN SCURCE LIST MAIN™

(2) + Si (2))/3.

Yy

FSM1I(2) + SKM1(3))/3.
SIMZ 4 FH(SM2{1) + 4.2S5K2(2) + SM2(3))/3.

REYM, REYS, Qs Q1 G2

XAsPATARA, TEA,Y)

-

o

"
#ono e

+ EX(SN (1) 3 4.48K (2) + S¥ (3))/2.
SIML + H¥(SMI(1) + 4.%SM1(2) + SM1(3))/3.
SI¥2 + R¥{SM2(1) + 4. *SPZ(?) + SN 2(’))/3.

CQ*WER / SERT(SIM)
1./ZF(SIK1y R)
COTHY*¥CPFUHCF2(ZR)
CCR*FNFIY ) /SIP2%%Ce2

REYS = URKZY#%:CCAUXS

REY¥ = CREMIV/( YXX(CHCM)I*Q)

VRITE(6,

SK(1)

SK1(1)

SK2(1) SMz(3)

IF (X oCEe. XED

CCNTINUE

€C TC 1C6

FCRMET ( TFiCe €y E1C.4)

FCRYAT (I1C)

FCR¥ET (1K1,€HM(CC) =

SH (3)
S¥1{3)

wopon

«CR. PC

2 EHTY/TC = o FhoZy 3Xy SHMU(CC)

616) S2 Xy PDy TDy Ry Yy REYMN, RLYS' €y

9 F5.25 33Xy 12EGAVNMA EBAR =
1 EHP(CC) = 9 FéoZ, 3X.'8}T(CC) = 9 F€Ee2y 3X, SUPR =

Gly, Q2

«€E. FED ) Gf TC 45C

sy E1Ce4// 1X, EHALPEA

2 Fa.25 3X,
y Flu2y 3%,y

r Faely



120¢€5
ISN

523
-524
525
526
527
530

531

532
533
524

5328

-85~

T C TAL FCRTRAN SCURCE LIST MAIN.
SCURCE STATEFENT

3 3Xy SHXG = 9 F846y 33Xy BHRS = , F8eGs 35Xy 5KFO y F8a.6y 3X,
4 6HLFO = 4 FSe€s 3Xy THELFO = 4Flleéy 3%y 4HA = 4 F2a6//
§ IXy GHCRL = 4 F4.2y 2Xy 6HCR2 = 4 F4e2y 32Xy SHRE = 3 F4.2,
€& 3Xys BHCMECA = , F4.2//)

602 FCRMAT (1X, 23EKy ¥Qy PGy DELE, NUQs T¥D, XJy FJ)

604 FCRMAT (1Xo51HLEEWARE LINE IS IN P-M RECICN DFy PT, NUy P/PC)

606 FCRNAT (1Xy51HZERC ALPFA LINE IS IN P-N REGICN ~ LF, PMy KU, P/PQ)

€08 FCRMAT (1X,351HVINCWARE LINE IS IN P-M REGICN CFy PE, NU, P/PC)

610 FCRMAT (/1X, 1ZKSTEP SIZE = 3 FT7e4y 232Xy THBETA = 4 F6.2/) ’

612 FCREAT {(1H1, 37X,
1 S8HCALCULATION CF STREANLINE, SCALE FACTCRS AKLC HEATING RATES//
2 3Xy 1HSy 9Xy 1EX, 13X, 3HPEI, 11X, SHTHETA, 1CX, 1HH, &X,
3 4HP/PCy 4Xs 6EREY{M)y 2Xy I1HREYNOLDS NGy €Xy THQ/QGI{L)y €X,
4 8HQ/QU(T1), 55X, EHR/CC(T2)/)

616 FCREAT (1Xs FT.4y 2Xy FSeb, 4X5; FlCeby 5Xy FlCaby 3X3F1Ce6y 2X,
1 F2.€y 2Xy FtoZy 1Xy E1346y EXs FBeb6y 5Xy F3.64 5X3 F8.6)

620 FCRKMAT (1X, EE16.8/)

€33 FCRMAT(35H RECCV, CL; URKy CCy CCTy CQR, CRENM/TE1E.8)

1C0C STCP ’

ENC



312065
ISN

0
1
2
3
4
5
6

$IRFTY

700

~86-

T C TA) FORTRAN SCURCE LIST °
SCURCE STATEMENT !

€ RUN1

SUBRCUTINE RUN1 (Xs Py Ty Ry TBy XA, PA, TA, RA, [BA)

CONMMEN CyCK9CA3SACAN,G4F4PCy XJy FJy EFJ

CINENSICN CX(6)y CP(E)y, LT(E), BR(E), DTE(E)

EXTERNAL NOLFUN

FFIX} = SCERT(2e3X = X%X) )

FTE( RyTB} = ~DF% CT ¥TBRZ(FXYA) + R¥({ ST

1 %%23% (FRDDF~DFALFAYA%RYAY/ (FEYARYA)XR2 — TSH(TSHDFRST/(FHYA))) |
2 +(CYE™CT +YF¥ST)%TB ~ RI(YEXSTHRSTHYRIRCTHCT/F) 4R¥STHCTHYI/F +YJ)
3 -YLAI{YEXST -~ YF2CT)}/YG)/YG

CATA DX(1l)y EP(1)y DT(1)y DR{1)y DTB{1) /53C.0/

CLO 7C0 N = 2,4 &

ST SIN(TH+LT(N-1)/24)

CT = CCS{T+LT(N-1)/2,)
SP = SIN(P+LP(N-1)/2.)
CP = COS{P+LP(N-1)/2.})

F = FF - AXHDX(N~1)/2.1)
E’F ‘10 - (X*‘DX(:\“I)/Ze))/F
EDF = —lo/F%%3
ECCF = 3. *LF/FX%4

i

YA = SERT{1l. <+LFXCF)

YB = DF*CA + SA%CP

YC = CA — DF3SHxCP

YO = C*YBXYB + CKXYAXYA

"YE = 2o RCHLDFRYEXYC/{YAFF23YD) -

. YF = =24 #(C*SAX §F *YE/(F3YD)

YC = 2o H{(YAF¥Z/YL)#%C -1 )/C ’

-YH = DOF*YEX(CLCF/CCF*%2 + CA/YE - SAXx CP /INC - 2.  F{CHYB*
1 CA + CK2DF)/YL - 3¢ *LF/YAR%2)/YA . '

¥I = YE%SA% SP ${~1se /YB 4CF/YC + 2. *C*YE/YE)

YJd = YFX{CDF4CA/YR -CF/F -2+ #OLF(CAYRFCA+CKIXCFI/YL)/YA

YK = YF*{ CP / SP +SA% SP (2. *CIYB/YL-1l. /Y21})
YL = 4o F{YALE2/YD )G (COFRSTH(YARXZH{CAHYEXCA +CRFLFI/YED

I - DFY/YA®E3 + C*YE&4SE% S£D *CT1/(F*YD)) *(R4+DR(N-1)/2.)
1S = (YEXST -~ YF¥CT)/YC —~ DF=ST/(F*YA)

EX{N) H¥CT/YL

CP(N} H*¥ST/F

CTI(N) TS*H

CRIN) =K% (TE+DTE(N~1)}/2. + (R+LCRIN-1)/2IFLFXCT/{FXYA))

i

ETE(N)=H*FTB( R4LR(N-1)/Z., TE¥DTIBIN-1)/2.)

XA = ( DX{2) + ( EX(2) 4 ©DX{4))%2. + DX(5)) / 6.
FA = ( DP(2) + ( CP(3) ¢+ ©DF(4))x2. + ©DP{5)) / 6.
T& = ( DT(2) + ( CT(2}) + ©DT(4))*2. + LT(5)) / 6.
RE = ( DR(2) + { CR(2) 4+ ELCR(4))%2. + CR(5)} / 6.
TEA = (DTE(2) + (CTB(2) + DTE(4))*2. + DTB(5)) / 6.
RETURN

END



12C05

10

11

12

13
14
15

1€
17
2C
21
22
23
24
25
2¢
21
20
21
32
33

34

[~
g

26
27
40
41
47
432
44
4%
46
47

87~

T C TAI FCRTRAN SCURCE LIST
SCURCE STATEFEMNT

SIBFTC RUNZ

SUBRCUTING RUNZ (¥y Py Ty Ry TEy PTaXAsF2yTA,RASTRA, PTM)
COMNON CyCKaCA9SAZCAN 4Gyl PC

CIFENSICN EX(6)y CP(E), ET{C), DR(6)y DTELE), DPT(E)
EXTEPNAL NCLEUN

ZB{ PT) = LLF/YE*42% ((CA-LF=SA )/YA**Z FCH(OFXCALSL) *
1 (Cce *%2 4CP ) + CAM FRPMT /SCRYT (RN ~ lo )% PT*(CP %
2 2 - CP 1/2 423 CALFHFO /YA**Z NN *%2)

1C{ PT)=SP F{2.%FC F(CHLFFCF/YAE%2 +CKY%X CP ~{CK+
1 Cx(DFRCARSHY /Y2 )A%2 )% (2. %CF +1e)/2s + PT¥(1le~ 24%CP V/2.}
200 PT)=(CHx{{CFICA+SA)/YA)=H24CK )% (CP %2 +CP 1/ 2. + PT*

1 (CP %2 ~CP /2. +PC ¥(CH{LF/YA) %2 +CKIHED **2

VA SN | ) = (YER(CTEF— 3o3CLFH{LLF/YA)IX2)/CLF + (CCF/YARS2) %

1 «( Cx{ 26%CA%CA ~1o =2.3DF¥SA¥CA ~ Zo% DF*(DF*CA+SL)*(CA~DC“S\)/

2 YAx32) #(CP %2 4+ CP )+ CAVERETHPTH (CAMARET— (2.~ RNET/U

3 RkT*l )Y/IPTARCIH{CP %2 - CP Y/ 2.5 {RKT-1,.))

& 42.3CHPC * (le— DF«DF)/YA“‘Z%SD **2

5 } = YEXYE/YD }/{YAIYAXYL)
21{ PT)=LOF3SP IYEFZ 2% {4 o ¥CHLFHPC * CP - IYAZXE2 —(CA
1 - bFx SAY/YE%R2 HCR(LFHCAISA)H(2.3%CF +1. ) + GAPNRFT

2 /SCRT(RET ~1.3% PTx{C.5 —-CP }) — YEFYC/YE

KL PT) = (YC*CF/S&P -~ SP ¥%7% (2.%FPO0 B{CH(DF/YA)

1 #%2 +CK)-(CH{{LF*CA¥SAI/YAISRZ 4CK) ~ PT) — YCXVC/YL)/ (F¥YD)

FRETU PT)= 2./(GIV - 14)%(1./ FT#%C ~ 1)

FET(FT4RET) = ELCF#CT/YAT43 % GAMYRET/SORT(RET - 1.) %PT

FTR{ ReTE) = ~DF% CT  STE/Z{F%YA) + R¥{ ST

1 $%2% (FSCOCF-DFSCESYA*YA)/ (FRYALYA)¥%2 — TS*(TS+CF*ST/(F%YA)))
2 +((VEXCT +YFESTIHT2 ~ R (YRISTHSTHYKECTRCT/F) +RASTHCVE(YI/F +VJ)
3 -YLE{YEXST - YF*CT)/YCI/YG

[ATA CX(1), CPL1}, DT(1)y DR{1)s DTE(1) /5%C.C/

LC 7C1L N = 2, §

F o= SCRT(Zo#{X4D3({N=11/24) = (X+LXU{R-1)/2.)%%2)

[F = (1o = (¥+LXIN-1)/2.))/F

[LF = -1./F%%

LLLF = 3. %[F/F%*

ST = SINITHITIN-1)/2,)
€T = CCS(THLT(N-1)/2.)
SP = SIMN(P+LP(N-1)/2.) '
CF = COS(P+IP(N-1)/2.)

RET = FRET(PI+CPI(N-1)/2.})

YA = SERT{l. +IF%*CF)

YE = Z2( PT+EPT(N~11/2.)

YC = ZC{ PI+ECPT(N-1)/2.)

YE = ZC¢ FI+EPT(KN=-1)/2¢)

YE = YL/ (YA%YD)

YF = YC/{F*YL)

YC = 2o ¥(1./YC%%C - 1.1)/C

Vo= ZEL FTH+EPT (M- 1)/2 )

YI = Z2I¢ PTADPTIIN-1)/2.) / (Y&%YLY
YJ = YI/F ~ YCACF/{F3F*Y2%YL)

YK = ZK( FT+LPI(1-10/2.)

YL = 24 JYD#5 (1. 4 CGPEIYEXST/YA ~ YCXCT/F)* (R4CR(A-1)/2.)
TS = (YESST - YF® Ll)/\C ~ DESST/LFRYA)

EX(N} = HICT/YA
LR{N) = R¥ST/F
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112065 T C TAI FCRTRAN SCLRGE LIST RUN2

ISN . SCURCE STATEFENT

- 5¢ ETIN) = TS¥H
51 CRUK) =H% (TCACTE(N=11/2. 4 (RECR{N=-1)/2.)XCFHCT/ (FEYA))
52 ETRIN)=K4FTRL RAER(N-1)/Zey TCHBIB(N=11/2.)
53 701 [PTIN)=H*FPT(PT+LPT(N~1)/2sy RNT)
55 ¥A = (CX (2) + (BX (2) + BX (4))%2. + DX (5)) / 6.
56 FA = (CP (2) 4 (CF (2) 4 DF (4))%2. + DP (5)) / 6
57 TA = (CT (2) + (BT (2) + DT {4))#2. + DT (5)) / 6.
60 RA = (DR (2) + (LR (2) + DR (4))%2¢ + DR (5)) / 6o
61 TBA = (DTS(2) + (DTE(2) + DTR(4))%2. + DTB(5)) / 6.
62 FTA = (CPT(2) + (CPT(2) 4 DPI(4))%2. + DPT(5)) / 6.
63 RETURN .

64 END
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11

12

13
14
15

i6
17
20
21
22
23
24

[ 4
o

2¢
21
3¢
31
32
33
34
35
36
31
4C
41
42
43
44
45
46
47
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T ¢ TAl FCRTRAN SCURCE LIST + .- |
SCURCE STATEMENT

FIBFTC RUNZ

SUBRCUTIME RUN3 (Xe Py Ty Ry TBy PTsPUsXASFA,TAGRAZTRA;FTAy P 8)
COMFCON CoCKgCA3SAHCANMyCyl-3PC

CIMENSICN DX(6)y ER(C)s LT(E)y LRIC), DYE(E), DPT(6), CPN(G)
EXTERNSL NCLKUN

2B( PT,Pi) = LOF/YA¥23% (CRH{LF*CA+SA)(CA —CFkSA)*({CP 2 4

1 CP Y/YAENZ & CARIREFTIPTH(CP *%2 - CP V/{2%8QRT{RET~141))
2+ PC % CAMARMMAPMR SP %2 /SCRTIRFM ~141)
IC{ PT4PM) = SP * (PTH(C.5- CP ) 4+ 2.2FC PN
1 CP ~ (CAH({DF¥CA+SAY/YA)R3Z +CR)% (Qo% 4CP M
200 PTP¥) = (CH{(DF3CAASAY/YAYRH2 1CKYH(CP X2 4+ LP /2.
1 + PIH(CP %2 -~ CP Y/2. + PO HPMESP *%2

ZE{ PTLBN) = (YEX(CLCF~- 3.4LFY(CLF/YA)XU2)/EC0F + (CLF/YAR%2) %422

1 %{ Ck{ 24%CA%CA —1s «2.4DF%SANCA ~ 2.%DFH{CF*CA+SA)SF(CA-CFXS2)Y/

2 YARRZ2) X(CP %2 + CP )+ CGAMERRUTHPTE (CAMARMT~ (2o~ RMT/(

3 RET-12))/PTHcCY*(CP #%2 - CP Y/ (2% (RET~1.)}+PC

4 HCANERMMAPMA(CANARIFN ~(Zs =RMVEJ(RNN-1o))/PiRFXGYHSP %2/ (RVF—-1.
5 1 )Y - YBERYRB/YLD Y/ (YARYAIYD)

ZI{ PT4PE) = LCLEF*SP JYR¥RZ % (CAPSRMTRPT*(C.5-CP Y/ SCRT(ANT
1 =1o) + 2%PC 2CEANMERY HEPRACP JSCRT(RMM-1e) — CH(LF*CA
2 +S2Yy*R{CA —~DFxSAY{2.%CP +la }/YASXZ ) - YEXYC/YC

ZK(  PT4PM)} = (YCECP/EP + (PT - 2.%PC *PM + CH{{DF*CA
1 +SAY/YR)Y*%2 + CK)*SP *%z — YCXYC/YD )/ (F%YL)

FRETE PT)= 2./{CAH = 1o )3{1le/ PTEXGC - 1)

FPT(FT,RIFT) = LCCFXCT/YARR3 % CAFSRMT/SCRT{RAT - 1.) *PT

FTEIL RyTE)} = -CF%* C7T HTE/(FRYL)Y 4+ R¥| ST
1 %424 (FHLOF-DFXCFFYASIYA)/ (FRHYAXRYAYP X2 — TSH{TSHDFRST/(F%YA)))

2 t{(YESCT +YFST)HTB ~ RI{YRISTAHSTHYKECTHCT/F) 4REASTHCTH(YI/F +YJ)
3 =YLY(YERST - YFRCT)/XG)Y/YC

CATA CX(1); EP{1), DT(1)y DR{1}y DTB(1), DFT(1)s UFM{1) /73%C.C/

EQC 7C2 N = 2, 5

F = SCRT(2F(XALX(N=1)/26) ~ (X4LX(N~1}/26)%%2)

F = {le ~ (X+CXIN-1)/2.))/7F

LEF = —1/F%*%3

CERF = 2. #CF/F3%4

ST =  SIN(THET(N-1)/2.)

CY = CCS(T+LT{N-1)/2,.)

SP = SIN(P+LP(N-1)/Z6)

CP = COS(P+LP(N~1)/2.)

RMT = FRMT(PI+LCPT(N-1)/2.)

RMNM = FRUT(PFECPMIN-1)/2,)

YA = SCERT(1l. LF*LF)

YB = 28( PI+DPT(K-1)/2es PHILLNM(N-1)/2.)
YC = Z2C{ PI+DPT(N~1)/24s PM+LPI(N-1)/2.)
YO = ZI¢ FI14CPT{k=1)/2.7 PE4LPM(N-1)/2.)
YE = YR/{YA*YD)

YF = YC/(F¥YL)

YC = 2. #(1le/YDAZC - 14)/6 ,

YHE = ZH( PT4LDFT(r~1)/249 PVALPF{N=-1)/24)
YI = 71 ¢ PY+DPT{0N-1)/2.5 PMHLFMIN=-1)/24)/7 (YASYD)
YJ = YI/F ~ YCHCF/AF3F3YL=YL)

YK = ZK{ FT+OPT{N=1)/2ey PFHDPMH(N-1)/2.)

YL = 24 JYCHA%({le 4 C)H{YEAST/YA — YCHCT/F )% (RALR(K-1)}/2.)
1§ (YE%ST - YFaCT)/YC = CEIST/UF=YA)
CX(N) = HACT/YA

1
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12C¢5 T € TAI FORTRAN SCURCE LIST RUN3

ISN SCURCE STATEMENT
5C CPIN) = RXST/F
- 51 ET(N) = TS=H .
52 ER{N) =K¥ (TE+CTE(N-1)/2¢ + (RELR(N=1)/24)VLFFCT/(F%YA))
$3 LTE(N)=RK*FTB{ R4IR(N-1)/2¢, TE4DTIL{N-1)/2.)
54 EPTIN)=R*FPT(PTHLPT(N-1}/209 RNT)

55 702 CENIRY=ERFPT(P-4LPM(N-1)/245 RMNM)

57 XA = (CX {2) 4 (BX (2) + DX (4))%2. + CX (5)) / 6,
&€ FA = (DP (2) ¢+ {DP (2} + DP (4))%2. + DP (5)) / 6.
€l TA = (DT (2) + (LT (2) + DT (4))%2. + DT (5)) / 6.
€2 fA = (LR (2) + {LR (2) + DR {(4})}%2+ + DR (5)) / 6.
63 TeéA = (CTB(2) + (CTR(2) 4 DTE(4))%2. + DTB(5)) / 6.
€4 FTA = (EPT{2) 4+ (CPT(2) + DPT(4))¥2. + DPT(5)) / 6.

5 FEA = (DpPN{2) + (DPM{2) + DPE({4))%2. + DFN{5)) / éa
€6 RETURN

€1 END
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12C6% T C TAXL FORTRAK SCGURCE LIST .
ISKW SCURCE STATEMENT
O $IBFTC RUNA
1 SUBRCUTIKE RUN4 {(Xy Py Ty Ry TEy PTaPN PR eXAsPATA,RASTER,PTA,

1 PFA, PEA)

2 COMVEN CyCRyCASSELCAY 3 Coliy PC )
3 CINENSTICN DX(G)y CP(6), LT(E), UR(E)s DTE(E)y EPT(C)LPN(E)H,LFE(G)
4 EXTERNAL NCLFUN
5 ZE(  PTPU,aPE) = CARKY¥LLF/YA#22 S (RVMBAPEX(CP 2 4CP Y/ (Ze%
1 SCRTI{RFE-1e)) + RMTHPTH(CP ¥tz ~CP YWAIZLAESQRTIRET=TW)) +
2 PCHRMISPUASE 2/ SCRT(RMM~14) )
6 "IC( PT,PH,PL) = SF ¥ (PT3(CaE~CP ) + 24%PLXFFFCP -~
1 FB*(O.5+CP 3 )
1 ZC( PT4PMyPE) = E2{l PB+PT)*CE %2 1+ (PE-PT)I=CP ) +
1 PCHFHASP i*Z
10 ZE( PT4PM,PFE) = ( YE/LCEH(CLLF -3 CFR(LDF/YA)%%2) + GAVZ{CDF/
1 YA2E2)%%2 %(RELE4PRX (Cﬁi RAME ~ (2o~ RME/IRYB-16))/ PE#XGIH{CP
2 *%2 +CP } Z(ZeH{RME-14)) + RETXHPTR (CANHANT - (2.-R¥VT/Z(RET-1.)
3 )/PTAEE) &(CP *%2 ~CF Y/ {24%(RET-1a)) +  PCARIVEXPI% (CAFFREN
4= (2.~RE¥/(RFN~-14 ) }/PENAC)ESP FR2/(R3VE~16))-YERYR/YD)/(YAXYL2YD)
il ZIL PYyPM,PC) = CEKACCF4ASP IYAELZ %k { RFTHPT#H{C.5-CP Y /SCRT
1 (RMT-1e) + Zo%*PLRRVMSPMICP JSCRTIRET-1e) - RMBIPEX{C.5+CP )
2 /SCRT(RME-1.) ) - YE*YC/YD
12 ZK{ PT4P¥,PE) = [YCXCP/SP + (PT~ 2.%PCHPXAPL)HSP FA2-YCHYC
1 /7YE) / {(F*YL) '
13 FRET( PT)= 2./7{CAF = 1s)3{1s/ PTH#%G - 2.)
14 FPT(FTsR¥MT) = CLF=CT/Y23%43 & CGAFARFT/SERTIRIT - 1.) *PT
15 FTa( RyTE) = =LF* CT FTEZ(FxY2) + R ST
1 %%2% (FACDF-DFFLFEYASYA)/ (FRYAZYA)&A%2 - TSH{TSH+LFAST/(FxYA)))
2 H{{YEXCT +YFESTIHTE - RA(YELASTRSTHYKXCTHCT/F) +RFSTHCTH(YI/F +YJ)
3 ~YLF(YE%ST - YFaCT)/YC)/VE
16 EATA CAL{LYCFPLY)sCT(1),CR(L}SCTBLL)OPT(1)EFPNI1)HEPE(L)/E%CaC/
17 EO 7C3 N = 2, 5
- 20 F o= SERT{2.%(X4CXx(1-11/26) — (X4LX(N-1)/2.)%42}
21 CF = (1o =~ {X¥+NX(N-1Y¥/2.))/F
22 [CF = ~le/F%43
23 LCDF = 3. *LF/F4%4
24 ST = SIK(T+LTI(N-1)/2.)
25 CT = COS(T+LTI(N-1)/2.)
2¢ SP = SIN(P+LP(R~1)/2.)
27 CP = CCS(P+EP(N~1})/2.)
30 RET = FRFT(PT+LPTIN-1)/2.)
31 Rt = FRFT(PM+EFMIN=-1)/20)
32 KFB = FRWT(PEHCPL(N-1)/2.)
33 YA = SCRT(1. +LF¥CF)
34 YBR=ZE{ . PT4EFPTIR=1)/24 3 PN4LPI{N-1)/20,PC+0PBIN-1)/2.)
35 YC=7C( PTACPTIRN=1)/2a g PEALPYAN=1)/ 20 F24C2RB{N-1)/24)
3¢ YE=2C( PTACFTAN=1)/24 o FHACPMIN-1)/24 4 PEHLPE(N~1)/ 20 )
37 YE = YRB/{YA%YD)
4C YF = YC/(F*YL)
41 YEC = 24 #{LJ/YEHF%C ~ 14)/G
42 Yh=ZF A PTHDFI(N=1)/2. VP N4LPFIN-1) /20,4 PE4ACPR(N~1)/20)
43 YI=71I( PTALPTIN-1)/26 o PEACPEIN=-1)/24 4P2C4CP3IN~1)/20)
1 /7UVE%YED
44 Y = YI/F - YCACF/(FAFAYLRYL)
45 YK=7K( PTADPT(R=1)/2a 9 PNMAEPMIN-1)/2. 3 FOHLP3(N~1)/24)

4¢ YL = 24 /YDA ()e 4 G)AELYDRXEST/YA = YCXCI/0)% {RALRIN-1)/24)



L2065 T € TAI FORTLAN CLURCE LIST RUNA S ,
1SN SCURCE STATEMENT
47 1S = (YEXS; — YFPS8oY12YC = UFSST/(FxYAl
50 EXTIY = WAOTAVA
51 LP(i) = HAST/F
52 LTIN) = TS*K
53 CRIN) =H¥ (TE+CTEIN-1)/2+ + (R4LRIN=1)/2.)5CERCT/(FRYA))
54 ETBIN) =H¥FTRE( RHLRIN-1)/2ay TR4DTE{N=1)/2.)
55 CETINY =L FoTIPTAEPT(M =10 %a s RET)
5 CPYAN = H - PTIPMAL P IR 2720y QW)
57 702 CPR(MN)=B¥FPT(PLALPE{N-11/204 R¥B)
&1 XA = (CX (2) + (CX (2) + DX (4))%2. + DX (5)) / €.
&2 FA = (DP (2) 4 (CP (2) 4 DF (4))%2., + DP (5)) / 6.
63 TA = (BT (2) + (CT (2) + DT (4))%2. + DT (5)) / 6.
&4 RA = (DR (2) + (LR (2) 4 DR (4))%2. 4 DR (5)) / 6.
65 TEA = [DTB(2) + (CTB(2) + DTF(4))%2. + DTR(S)) / 6.
€6 FTA = (CPT(2) + (CPT{2) + DPTL4))%2. + DPT(5)) / 6.
61 TEA = (DPE(2) 1 (DEN{Z2) + DPy{4))%2. + DOE(5)) / 6.
70 “BA = (DPE{2) 4 (DP2(2) + OPE(4))%2. + DPB(5)) / 6.
71 RETLRN

12 ENC
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1C
11
12
13
14
15
1¢
17
2C
21
22
23
24
25
26
21
3¢
21
32
33
24
35
3€

2

s

40
41
42
43
44

45
4%
47
50

©
o~

57
53
54

5¢
éC
¢l
&2
€3

SIRFT
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T C Til FORTRAN SCLRCE LIST
SCURCE STATEFENT
C RUNE

SUCRCUTINE RUNS {Xy Po Ty Ry TEy Xhy PAy TA; DAy TBA, YY)
CINCRSION CX(6)y CP(E)y [T(E)y CRIG)y LTE(E)

EXTERNAL NCLMUN

CCKRCN C CX 1LA, L,GAF,G,},PCQXJ,FJ7CFJ /ESC/ECI1hG29EC39
1 81152 tJ,F11C¢,CB

CATA CX{1)y CPU1)y BT(1)y LR{1)s DTELL) /54C.C/ 7

FTE( ReTE) = ~LF% CT FTUACFRYAY ¢+ R ST
1 ¥%2s | ~OUACFAYLAIYAY, (FAYARYAYA%H2 — TSHATSHLFRST/(F%YA)))

2 FOCYERCT 4#YIRSTINTE — RA(YREISTHETHYKSCTHCY/FY HRSTHCTH{YI/F V)
3 ~YLR(YESST -~ YFSCT)/YC)/IYC

LF ErJ

A SGRT({1l. + CF=CF}

LG 7C5 N = 24 5

i

€T = SINITHCTIN-1}26)
€T = COSUI+LTIN-1)/26)
SP =  SIN{P4LDIN-11/2.)
CP = CCS{P+IPIN-1)/2.)

€2P= SIN((P+IP{k-1)/2.)%20)
Ce2ft= CCS((F+LP(N-1)/246)%20)
7 = ¥ 4+ CX(KN-1)/2. - XJ

F = FJ. t+ ZADF

El = EXP(-C1%Z)

£2 = EXP(~-C2%2Z)

E3 = EXP(-C3%2) ,

A = Co5%(BG3 —~ ECI + E2%E3 -~ BI1%E1)

E = G285 % (EG1 4 Z.%BC2 + BU3 -+ BI*EY + 2.%p2%E2 + BE33%:2
£ = E - BL2 - B24EZ :

LA =~Ce5 * (E3%C2%E3 «~ EIXCI¥EL)

ER =-¢25%(c14CI%EY + 2.%E2%C2%E2 + B3*(3%03})

LE = DB + B2¥C2%t£2

LCA = CoB5 % (B2aC3%C2%E2 - B1%C14C1%E1)

T0R = Co2B%(F13C1ISCI¥EYL 4 2.%BZRL2¥C2%E2 + B3*(C2%C3%E3)
ECE = DODR «~ E22C2%C2%EZ

YR = LARCP + DR + CE=(C2P

YO = ~A%SP — 2%E%S2F

YO o= ARACP ¢ E + E=L2P

YE = YE/{YA%YD)

YF = YC/{YDH{FHEXCT/YESLF))

YE = 2. #LLSVEFLE - 1ad/G

Yt = (CLA%CP + CLB 4 CLE3C2F -~ YELYE/YIY /7 (YARYASYD)
YT = ~{DA3SP + 2.%LEXSZ2P 4+ YERYC/We) /7 {YAnYS)

YJ o= YI/F = YCRLF/(F4FsYA%YD)

TEoe e )l L A ARNCZE 4 YORC/YD) 4 {FEYE)

YL = 2. JYDFER LI b CYR{YTRHLT/YA ~ YOXCT/F)S (RH4CRIN-1)/24)

TS = (Yo d8T «~ YPECT)/AYGE — DFAST/ZEFEYA)

TXINT = (FCT/YA

CRUNG = HSSTALFRE JVINDILER )

LTINY = Thdl

ERIN) =H* fTP4F1l(u*‘}/2. ¢ RALRIE -0/ OIS FRCT AL YA
CTRIRY=RS, Yo f RalPIMN-10/2.0 TIAUTTN-37 50

o= { LxlZYy + EA(:) 4 gris¥yate 4+ LXELYY S G

FA = { LF{2) 1 | FP(Z) 4+ CF(4:}52. « TCPIHY) / €.

1A = { CT{2) + | f(2) 1+ CT{AYiAes 4+ CTUS)Y / Ca

FA = ( CR(2) + | DP(B) 4 CR{4)INZ. 4 LDR(S5Y) / &.




312C€5
ISKN

&4
3}
&6
&1
¢
"1
T2
i3
T4
15
6

94—

T € TAl FCRTRAN SCURCE LIST RUANY
SCURCE STATEMENT

TBA = (RTR{Z) + (CTR(Z) + CTE(4))¥%2. + DTE(S)) 7 6.
2 = X+ XA - XJ

El = EXP(-C13Z)

E2 = EXP({-C2*Z)

E3 = EXP(-C3%Z1)

£ = CJ5%{EC3 — EC1 + P3%E3 ~ BI=ED)

E = Co25 = {(EO1 + Z2.%PCZ + EC3 + BI¥EL + 2.%EZ%*E2 + E3*L2)
E =L - BC2 - E23&2

Y = LSCCS{F+PA) + B & E~COS(Zax{FtFA}])

RETUEN :

END
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12C¢8 T € TAl FCRTRAN SCURCE LIST + .- |
ISN SCURCE STATEFENT :

0 $IBFTC CCLLAR

1 SUBRCUTIRE CULLAR {CGAFs Uy RNQy RNUy PT)

2 fVG = REQ*RIC

2 tC ¢C 1 = 1, 2C

4 Fiv = €o/CCSEIRNU + ARCCI(1./SCRTIRMEG)Y) / SCRT{&.) 342 ~ 5,
5 1F { ABSU(RM-RICI/RMT) oLEW CaCCCL) GC TC T7C

Ri

(2./(2&”‘ (Gf\t" - 1.)*R:" ))*::‘(10/(;)

1C 60 FKC
12 70 FT
13 RETURN
14 ENE

®on
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